摘要
本文参照Zhao和Anastasiou的方法,导出了逼近Booij的非线性弥散关系的近似显式表达式,该式给出的结果与Booij的非线性弥散关系相当吻合。用中文显式非线性弥散关系,结合会弱非线性效应的缓坡方程,构成含非线性影响项缓坡方程的一个求解浅水波变形问题的方程组。用实验数据对本文模型进行验证,结果表明,显式非线性弥散关系在求解浅水波变形问题时,给出了更符合实验数据的结果。
An explicit nonlinear formulation in terms of the method of Zhao and Anastasiou is presented to approximate the dispersion relationship suggested by Booij (1981). The present explicit expression is in good agreement with the originalempirical formula of Booij. Using this expression and the mild slope equation withweak non-linearity, a mathematical model for shallow-water wave transformationis developed. The model is tested against the laboratory data. Compared with thoseobtained through a linear model excluding the effect of non-linearity, the computation results show that the present model is rational and in good agreement withexperimental data.
出处
《海洋湖沼通报》
CSCD
北大核心
1999年第4期1-7,共7页
Transactions of Oceanology and Limnology
关键词
浅水波
非线性弥散关系
缓坡方程
波浪
Shallow-water wave, nonlinear dispersion relation, explicit non-linear dispersion relation, mild slope equation