期刊文献+

三维有限元六面体网格几何自适应再生成方法 被引量:3

Geometric adaptive remeshing algorithm of hexahedral mesh for 3D FEM
下载PDF
导出
摘要 基于几何自适应的六面体网再生成方法,提出了一种以栅格法为基本方法,对有限元网格再划分过程中的网格再划分标准、几何形状的获取以及新旧网格之间物理量的传递等关键问题进行了研究。重点介绍了基于几何自适应的六面体网格再生成算法,首先对旧网格实体模型进行识别,根据实体模型几何特征建立加密源点信息场;然后采用栅格法生成核心网格并对核心网格与模型边界进行拟合;最后采用节点位置平滑和拓扑关系优化对网格进行优化,生成质量较好的网格。网格再划分实例表明,该方法实用性强及效果良好。 Based on geometrical adaptivity,a remeshing method of hexahedral element mesh with grid-based approach is presented.Several key technologies about hexahedral element remeshing for FEM are studied,such as the criterion of remeshing,the getting of geometrical shape of old mesh model and the transformation of state variables from the old mesh into the new mesh.The emphasis of this paper is focused on the remeshing algorithms of hexahedral element mesh based on geometric adaptive.First,the geometrical features of the old mesh model are extracted and the refinement information fields of the source points are constructed based on the geometric features.Secondly,the core mesh is constructed with grid-based approach then the boundary mesh is constructed by linking the core mesh with the surface of the old mesh model.Finally,mesh smoothing and topology optimization are employed to improve the quality of the resulting mesh.The effectiveness and robustness of the algorithm are tested through applications.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2011年第1期72-77,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50875155)资助项目
关键词 有限元方法 六面体网格 自适应生成 栅格法网格再生成 FEM hexahedral element mesh adaptive generation grid-based approach remeshing
  • 相关文献

参考文献10

  • 1Behrens B A. Finite element analysis of die wear in hot forging processes[J]. CIRP Annals-Manufacturing Technology, 2008,57 : 305-308.
  • 2Lu C, Zhang L W ,Mm Z J, et al. 3D FEM simulation of the multi-stage forging process of a gas tur- bine compressor blade [J ]. Materials Processing Technology, 2008,198 : 463-470.
  • 3Benzley S E, Perry E. A Comparison of All-Hexahedral and All-Tetrahedral Finite Element Meshes for Elastic and Elastic-Plastic Analysis[A]. Proceedings of the 4th International Meshing Roundtable[C], 1995 : 179-191.
  • 4Su Y, Lee K H. Automatic hexahedral mesh generation for multi-domain composite models using a hybrid projective grid-based method [J]. Journal of Computer-Aided Design, 2004,36(3) : 203-215.
  • 5Zhang H M,Zhao G Q, Ma X W. Adaptive generation of hexahedral element mesh using an improved grid-based method[J]. Journal of Computer-Aided Design, 2007,39 : 914-928.
  • 6Fernandes J L M, Martins P A F. All-hexahedral remeshing for the finite element analysis of metal forming processes[J]. Journal of Finite Elements in Analysis and Design ,2007,43 : 666-679.
  • 7陈军,张向,阮雪榆.基于曲面偏置的六面体有限元网格再划分算法[J].上海交通大学学报,2002,36(4):449-452. 被引量:3
  • 8李佳彬,黄健,秦薇.基于结点应力误差估计的自适应网格划分[J].计算力学学报,2008,25(6):753-757. 被引量:3
  • 9关振群,单菊林,顾元宪.基于转换模板的三维实体全六面体网格生成方法[J].计算力学学报,2005,22(1):32-37. 被引量:10
  • 10江雄心,万平荣,游步东.三维有限元模拟中的网格重划[J].金属成形工艺,2002,20(2):21-24. 被引量:10

二级参考文献25

  • 1ZIENKIEWICZ O Z, ZHU J Z. A simple error estimarion and adaptive procedure for practical engineering analysis[J]. International Journal for Numerical Methods in Engineering, 1987,24 : 337-357.
  • 2BUGEDA G. A comparison between new adaptive remeshing strategies based on point wise stress error estimation and energy norm error estimation [J]. Communications in Numerical Methods in Engineering, 2002,18 : 469-482.
  • 3LI L Y, BETTESS P, BULL J W. Theoretical formulations for adaptive finite element computations [J]. Communications in Numerical Methods in Engineering, 1995,11 : 857-868.
  • 4International Center for Numerical Methods in Engineering. GiD.. The Personal Pre-and Postprocessor -User Manual (V 7). Barcelona, Spain, 2003.
  • 5COOK R D. An element error indicator and a related stress-improvement procedure [J]. Communications in Numerical Methods in Engineering, 1993,9:207- 217.
  • 6GROSSE I R, KATRAGADDA P, BENOIT J. An adaptive accuracy-based a posteriori error estimator [J]. Finite Elements in Analysis and Design, 1992, 12:75-90.
  • 7TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[M]. McGraw-Hill, New York, 1970.
  • 8YOUNG WC, ROARK R J, BUDYNAS R G. Roark' s Formulas for Stress and Strain [M]. McGraw-Hill, New York, 2002.
  • 9陈军.虚拟模具制造及其金属成形过程三维仿真技术研究[M].上海交通大学,1996..
  • 10Landertshaman F, Steffan H. Method to generation complex computational meshes efficiently[J]. Communications in Numerical Methods in Engineer-ing,1994,10(5):373-384.

共引文献21

同被引文献31

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部