期刊文献+

机器人的柔性关节机械手控制研究 被引量:5

Research on Flexible-joint Control for Robots
下载PDF
导出
摘要 研究柔性关节机械手的自适应控制策略,当机械手系统参数准确已知时,传统的反演控制算法可以根据状态反馈对柔性关节机械手进行控制。但是机械手模型参数存在误差时,传统的控制方法需要关节加速度反馈,这将对柔性关节机械手的控制信号将引入噪声,能够破坏系统的动态品质。为解决上述问题,在反演控制算法的基础上引入鲁棒性,提出了鲁棒自适应反演控制算法。在已知模型误差界的条件下,通过神经网络对误差在线自学习,实现了无需模型的柔性关节自适应控制。与传统算法相比,新方法对未知扰动等模型具有鲁棒性及全局稳定性,同时不需要关节加速度信息反馈。 The self-adaptive control scheme has been researched for flexible-joint robots.When the system parameters are known,the backstepping design method is directly applicable to control flexible joint robot manipulators with state feedback.On the other hand,when the system parameters are unknown,in order to control flexible joint robot manipulators,the original adaptive backstepping design method requires the joint acceleration feedback,which are prone to noise.In order to overcome the problem,we present an additional robust control law in conjunction with the adaptive backstepping design procedure.With the known error boundary of model,the self-adaptive control for flexible-joint robots is realized with unknown model parameter.Compared with most of the available control schemes for flexible joint robot system that assumes weak joint flexibility or knowledge of joint accelerations,the proposed control law guarantees global stability of the robot manipulators with uncertain joint flexibility without recourse to any joint acceleration or jerk measurements.
作者 赵丹青
出处 《计算机仿真》 CSCD 北大核心 2011年第2期244-247,共4页 Computer Simulation
关键词 柔性 反演算法 联合仿真 轨迹跟踪 Flexible Backstepping Emulate unite Tracking
  • 相关文献

参考文献6

  • 1Liu Jin - Kun, Sun Fu - Chun. Nominal Model - Based Sliding Mode Control with Backstepping for 3 - Axis Flight Table [ J ]. Chinese Journal of Aeronauties, 2006,19 ( 1 ) : 65 - 71.
  • 2Wu Qiang, Liu Jin - Kun. Backstepping Position Tracking Controller Design With Neural Network Deadzone Compensation [ C ].1st International Symposium on Systems and Control in Aerospace and Astronautics ISSCAA 2006, Harbin, China, 2006. 1145 - 1150.
  • 3Jiang Zhong - Ping, Henk Nijmeijer. Tracking control of mobile robots: A case study in backstepping [ J ]. Automatica, 1997,33 (7) : 1393 -1399.
  • 4Ognjen Kuljaca, Nitin Swamy, Frank L Lewis, Chiman M Kwan. Design and Implementation of Industrial Neural Network Controller Using Backstepping[ J]. IEEE Transactions on Industrial Electronics, 2003,50(1) :193 -201.
  • 5Jong H Oht, Jin SLeet. Control of Flexible Joint Robot System by Backstepping Design Approach [ C ]. Proceedings of the 1997 IEEE, International Conference on Robotics and Automation, New Mexico, 1997. 3435 -3440.
  • 6刘金,周志雄,黄向明,周德旺.一种微细零件上下料机械手的设计与仿真[J].计算机仿真,2010,27(2):166-169. 被引量:5

二级参考文献3

  • 1J Rastegar, B Fardanesh. Manipulator workspace analysis using the Monte Carlo method[J].Mech. Mach. Theory, 1990, 25(2).
  • 2MSCSOFTWARE著,李军,陶永忠译.MSC.ADAMSFSP基础培训教程[M].北京:清华大学出版社,2004.76-95.
  • 3杨军宏,尹自强,戴一帆.基于ADAMS的二维转动平台运动学分析[J].机械,2002,29(5):4-6. 被引量:17

共引文献4

同被引文献55

  • 1刘金琨.机器人控制系统的设计与MATLAB仿真[M].北京:清华大学出版社,2008.
  • 2Yao Han, Xie Wenfang, Ye Cang. A Composite Approach to Adaptive Neural Networks Control of Unknown Flexible Joint Robots[J]. International Journal oflntelligent Control and Systems, 2007, 12(3): 245-253.
  • 3Oh J H, Lee J S. Backstepping Control Design of Flexible Joint Manipulator Using Only Position Measurements[C]// Proceedings of the 37th IEEE Conference on Decision & Control. Tampa: IEEE, 1998: 931-936.
  • 4Gyurkovics Eva, Svirko Dmitri. A Nonlinear Observer for Flexible Joint Robots[J]. Periodica Polytechnica Ser. Mech.Eng., 2002, 46(2): 127-137.
  • 5Rodriguez-Angeles A,Nijmeijer H. Synchronizing Tracking Control for Flexible Joint Robots via Estimated State Feedback[J]. Journal of Dynamic Systems, Measurement and Control, 2004, 26(1): 162-172.
  • 6Lozano R, Valera A, Albertos P, et al. PD Control of Robot Manipulators with Joint Flexibility Actuators Dynamics and Friction[J]. Automatica, 1999, 35(10) : 1697-1700.
  • 7Ge S S, Lee T H, Tan E G. Adaptive Neural Network Control of Flexible Joint Robot Based on Feedback Linearization[J]. International Journal of Systems Science, 1998, 29(6): 623-635.
  • 8毛旭梅.基于神经网络逆系统的永磁同步电机解耦控制[D].电子科技大学,2008.
  • 9王艳,曾庆军.遥微操作机器人系统滑模变结构控制研究[J].计算机仿真,2008,25(7):145-148. 被引量:5
  • 10夏辉丽,刘幺和,宋庭新.面向机器人远程控制的本体建模及应用研究[J].计算机仿真,2008,25(9):86-88. 被引量:2

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部