期刊文献+

多数据库事务并发调度算法优化技术研究 被引量:9

Transaction Concurrency Scheduling Algorithm Optimizations Technology Research in Multiple Database
下载PDF
导出
摘要 研究优化调度数据库中事务问题,为保证多数据库中事务提交顺序,提高事务执行及提交的并发度,研究了事务提交图的调度算法TM2,针对算法TM2中事务管理器无法检测到全局事务与局部事务的间接冲突,提出了优化算法TMO,采用ticket算法在全局事务的每个子事务之间增加数据操作,以便在每个成员数据库的全局子事务之间创造直接冲突,并通过添加保存点恢复中止事务代替重做事务,保持了多数据库中事务的可串行化。通过仿真,对比了两种调度算法的性能。得出算法TMO解决了事务的可串行化问题,提高了事务的并发度,保证了事务的一致性。 In order to ensure the submitted sequence of muhi - database transaction and enhance the concurrency of transaction implementing and submitting, presented a transaction - based scheduling algorithm of plan submitting of TM2. For GTM in the TM2 algorithm can not detect the indirect conflict between global transaction and local affairs, an optimization algorithm of TMO is proposed, by using ticket algorithm to increase data manipulation between affairs of global transaction services, to create a direct conflict between the sub - transactions of each member of the global database, and by adding a save point to restore the suspension to replace service redo affairs, which maintains the serializability of multi - database transaction. Through simulations, the performances of two scheduling algorithms are compared. TMO algorithm can solve the issue of affairs serializable, and ensure transaction consistency.
出处 《计算机仿真》 CSCD 北大核心 2011年第2期393-396,共4页 Computer Simulation
关键词 多数据库 可串行化 事务 Multi - database Serializable Transaction
  • 相关文献

参考文献9

二级参考文献34

  • 1尹黎明,陈帆,卢正鼎,王治纲.多数据库系统中安全机制的研究[J].计算机工程与科学,2004,26(12):75-78. 被引量:1
  • 2徐晓阳.触发器在SQL Server数据库开发中的应用[J].电脑开发与应用,2005,18(1):48-49. 被引量:14
  • 3J Srivastava, et al. Web usage mining : Discovery and applications of usage patterns from web data[ J]. SIGKDD Explorations, 2000, 1 (2) :12 -23.
  • 4R Cooley, B Mobasher, J Srivastava. Data preparation for mining world wide web browsing patterns[ J ]. Knowledge and Information Systems, 1999,1 ( 1 ) :5 - 32.
  • 5B Mobasher, R Cooley. Creating adaptive Web sites through Usage2based clustering of URLs[ C]. Proc of the 1999 IEEE Knowledge and Data Engineering Exchange Workshop. New York : IEEE Press, 1999:32 - 37.
  • 6G Paliouras, et al. Clustering the users of large web sites into communities[ C]. Proc of the 17th lnt Conf on Machine Learning. San Mateo : Morgan Kaufmann, 2000. 719 - 728.
  • 7Y Fu, K Sandhu, M Shih. A generalization 2 based approach to clustering of Web usage session[ C]. Web Usage Analysis and User Profiling. New York :Springer2Verlag, 2000.21 - 38.
  • 8C Shahabi, A M Zarski, J Shah. Knowledge discovery from users web2page navigation[ C]. Proc of 7th Int Conf on Research Issues in Data Engineering. Birmingham: IEEE Computer Society Press, 1997.20 - 29.
  • 9M Perkowitz, O Etzioni. Adaptive websites :Automatically synthesizing Web pages[ C]. Proc of AAAI 98. Madison: AAAI Press, 1998.35 - 40.
  • 10C Hollot, V Misra, D Towsley, W B Gong. On designing improved controllers for AQM routers supporting TCP flows [ C ]. In : Proceedings of INFOCOM 2001 , Anchorage , Alaska ,2001,3 (33) : 1726 - 1734.

共引文献26

同被引文献50

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部