期刊文献+

基于最小最大决策的三站时差定位布阵优化 被引量:1

Optimization of Station Layout Based on Minimax Principle for Tri-Station TDOA Location System
下载PDF
导出
摘要 提出了一种基于最小最大决策的三站时差定位布阵优化方法,以提高系统对目标区域的整体定位精度。应用基于最小最大决策的最优化理论,建立布阵优化问题的数学模型。该模型以三站坐标为决策变量,以目标区域的最大水平定位误差最小为目标函数,然后运用基于最小最大决策的最优化算法,求解模型的最优解,并将此最优解作为三站时差定位系统的最优布阵。仿真结果与理论计算一致,验证了这种布阵优化结果的最优性。 An difference of arrival prln the ciple is used to optimization method of station layout based on minimax principle (TDOA) location system is presented. The optimization theory build a mathematical model for layout optimization. In this model for tri-station time based on minimax , the coordinates of three stations are regarded as decision variable, minimization of the maximum horizontal dilution of precision (HDOP) is regarded as objective function Then the optimal solution is studied by using optimization algorithm based on minimax principle. And the optimal solution is considered as optimal layout of the tri-station TDOA location system. Simulation results are in accordance with the theotical calculation, which verifies the optimality of the optimization method
作者 曾辉 曾芳玲
机构地区 电子工程学院
出处 《现代防御技术》 北大核心 2011年第1期100-104,共5页 Modern Defence Technology
关键词 三站时差定位 最小最大决策 布阵优化 定位精度 tri-station time difference of arrival(TDOA) location minimax basis embattling opti- mization location precision
  • 相关文献

参考文献7

二级参考文献22

  • 1张守信.外弹道测量与卫星轨道测量基础[M].北京:国防工业出版社,1992..
  • 2张守信,GPS卫星测量定位理论与应用,1996年
  • 3王广运,差分GPS定位技术与应用,1996年
  • 4W. H. Foy, “Position-location solutions by Taylor - series estimation,”IEEE,Trans. AES - 12, NO. 2, p187 - 194,Mar. 1976.
  • 5D. J. Torrieri, “Statistical theory of passive location systems,”IEEE, Trans. AES - 20, NO. 2, p183 - 198,Mar. 1984.
  • 6B. Friedlander, “A passive localization algorithm and its accuracy analysis,”IEEE, Journal of Oceanic Engineering,OE- 12, NO. 1 ,p234 -245 ,Jan. 1987.
  • 7H. C. Schau and A. Z. Robinson,“ Passive source localization employing intersecting spherical surfaces from time -of - arrival differences,”IEEE, Trans. ASSP - 35, NO. 8,p1223 - 1225 ,Aug. 1987.
  • 8J. O. Smith and J. S. Abel,“ Closed-form least - squares source location estimation from range-difference measurements,”IEEE,Trans. ASSP - 35, NO. 12, p1661 - 1669,Dec. 1987.
  • 9J. S. Abel, “A divide and conquer approach to least-squares estimation,”IEEE, Trans. AES - 26, NO. 2, p423 - 427,Mar. 1990.
  • 10Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location, “IEEE Trans. SP42, NO. 8, p1905 -1915,Aug. 1994.

共引文献95

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部