期刊文献+

三价砷氧化细菌Acidovorax sp.GW2中As(Ⅲ)氧化酶基因和调控序列的克隆鉴定 被引量:4

Isolation and identification of arsenite oxidase gene and regulatory sequences in an arsenite-oxidizing bacterium Acidovorax sp.GW2
下载PDF
导出
摘要 通过反向PCR和细菌Fosmid文库筛选,克隆得到1株三价砷[As(Ⅲ)]氧化细菌Acidovorax sp.GW2的As(Ⅲ)氧化酶Aox基因簇,包括aoxRSXABCD7个基因,分别预测编码双组分信号传导系统转录调控子AoxR(同源性68%),周质感应组氨酸激酶AoxS(同源性55%),周质结合蛋白AoxX(同源性55%),砷氧化酶AoxAB(同源性分别为74%和71%),硝基还原酶AoxC(同源性46%),细胞色素c AoxD(同源性63%)。反转录PCR结果显示,编码双组分系统的aoxRS基因共转录,而与之转录方向相反的结构基因aoxABCD处于同一操纵子中,aoxX基因和aoxRS基因不在同一操纵子中。通过对aoxS、aoxX、aoxD的基因敲除功能研究发现aoxS和aoxX基因为GW2三价砷氧化的必需基因,aoxD的功能丧失减慢了三价砷的氧化速率,但非关键基因。 Using reverse transcriptase PCR method and a bacterial fosmid library screening,an arsenite oxidase gene cluster were isolated from an arsenite-oxidizing bacterium Acidovorax sp.GW2.There are seven genes including aoxRSXABCD putatively encoding the transcriptional regulator AoxR of a two-component signal transduction system (68% identity),a periplasmic sensor histidine kinase AoxS (55% identity),a periplasmic binding protein AoxX (55% identity),arsenite oxidase AoxAB(74% and 71% identity,respectively),nitroreductase AoxC (46% identity) and cytochrome c AoxD (63% identity) respectively.According to the reverse transcriptase PCR experiments,aoxR and aoxS encoding for a two-component system proteins are co-transcribed and located in opposite to structural genes aoxABCD.aoxX and aoxRS are not in the same operon.Functional analyses through gene knock-out of aoxS,aoxX and aoxD showed that aoxS and aoxX are the essential genes in arsenite oxidation of GW2,and the loss of aoxD did not show significant effects on arsenite oxidation.
出处 《华中农业大学学报》 CAS CSCD 北大核心 2011年第1期23-29,共7页 Journal of Huazhong Agricultural University
基金 国家自然科学基金项目(30970075) "863"计划(2007AA06Z332)
关键词 Acidovorax sp.GW2 三价砷 三价砷氧化菌 三价砷氧化酶基因簇 双组分系统 Acidovorax sp. GW2 arsenite arsenite-oxidizing bacterium arsenite oxidase genecluster two-component system
  • 相关文献

参考文献15

  • 1HARVEY C F, SWARTZ C H, BADRUZZAMAN A B M, et al. Arsenic mobility and groundwater extraction in Bangladesh[J]. Science, 2002,298 : 1602.
  • 2BATTAGI.IA BRUNET F, DICTOR M C, GARRIDO F, et al. An As(Ⅲ) oxidizing bacterial population: selection, charac terization, and performance in bioreactors[J]. J Appl Mierobiol, 2002,93: 656-667.
  • 3SANTINI J M,VANDEN HOVEN R N. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT 26[J]. J Bacteriol,2004,186: 1614-1619.
  • 4KASHYAP D R, BOTERO L M, FRANCK W L, et al. Complex regulation of arsenite oxidation in Agrobacterium tumefacien.[J]. J Bacteriol, 2006,188 : 1081-1088.
  • 5BRANCO R, FRANCISCO R, CHUNG A P, et al. Identification of anaox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24 [J]. Appl Environ Mierobiol, 2009,75(15) : 5141-5147.
  • 6FAN H X, SU C L, WANG Y, et al. Sedimentary arsenite oxi dizing and arsenate-reducing bacteria associated with the geological arsenic groundwater contamination in Shanyin, Datong Basin, China[J]. J Appl Microbiol, 2008,105 (2): 529-539.
  • 7DENNIS J J, ZYLSTRA G J. Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram negative bacterial genomes[J]. Appl Environ Mierobiol, 1998, 64:2710-2715.
  • 8MARX C J, LIDSTROM M E. Broad-host-range cre-locc system for antibiotic marker recycling in gram negative bacteria[J]. Bio Techniques, 2002,33 : 1062-1067.
  • 9HUANG H C, HE S Y, BAUER D W, et al. The pseudomona syringae pv. syringae 61 hrpH product,an envelop protein re quired for elicitation of the hypersensitive response in plants [J]. J Bacteriol, 1992,174(21) : 6878-6885.
  • 10WEEGER,W D, LIEVREMONT M, PERRET F, et al. Oxidation of arsenite to arsenate by a bacterium isolated from an a quatic environment[J]. Biometals, 1999,12:141-149.

同被引文献101

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部