摘要
研究基于三维可压缩Navier-Stokes方程拟线化方法的整体稳定性问题的数值求解,采用隐式重启的Arnoldi方法求解其特征值问题.针对三维可压缩绕球基本流,研究其在亚临界参数Reynolds数Re=200,马赫数M=0.2,以及超临界参数Re=300,M=0.6下的整体稳定性问题.结果表明,Mach数的增加(直至M=0.6)对流场模态的转变没有定性影响.
Global linear stability of compressible,three-dimensional flow around a sphere is investigated with a quasi-linearization method on Navier-Stokes equations.An implicit restarted Arnoldi approach is adopted to solve the eigenvalue problem.The global stability problem of three-dimensional compressible basic flows around a sphere is investigated at subcritical parameters of Reynolds number Re = 200,Mach number M = 0.2,and supercritical parameters of Re = 300,M = 0.6.It shows that the increasing of Mach number(up to 0.6) has no qualitative influence on transition of flow patterns.
出处
《计算物理》
EI
CSCD
北大核心
2011年第1期10-18,共9页
Chinese Journal of Computational Physics
基金
国家自然科学基金(10772172
10602056
10432020)资助项目
关键词
整体稳定性
可压缩流动
绕球流
global instability
compressible flow
flow around a sphere