摘要
标量乘法的效率决定着椭圆曲线密码体制的性能,而Koblitz曲线上的快速标量乘算法,是标量乘法研究的重要课题。Lee et al算法采用Frobenius映射扩展正整数k,并将其扩展后的系数改写成二进制形式,有效地提高标量乘算法效率。文中将JSF应用到扩展后的系数中,以较小存储空间为代价来提高算法效率,并将算法运用到改进的ECDSA算法中,加速签名验证过程,节约数字签名时间。
The capability of ECC depends on the efficiency of scalar multiplication.Furthermore,fast scalar multiplication algorithm on Koblitz curve is the top demanding task in the research of scalar multiplication.In Lee et al.algorithm,Frobenius map is utilized to expand integer k and each coefficient of the expansion is represented as a binary string.In this paper,with the application of Joint Sparse Form to the coefficients,the efficiency of algorithm is improved at a lower storage requirement.The improved algorithm was applied to promote ECDSA algorithm could accelerate the process of verifying signature and decrease the time of verifying signature.
出处
《电子科技》
2011年第2期79-82,共4页
Electronic Science and Technology