期刊文献+

Koblitz曲线上改进的ECDSA算法

Improvement of ECDSA Algorithm Based on Koblitz Curve
下载PDF
导出
摘要 标量乘法的效率决定着椭圆曲线密码体制的性能,而Koblitz曲线上的快速标量乘算法,是标量乘法研究的重要课题。Lee et al算法采用Frobenius映射扩展正整数k,并将其扩展后的系数改写成二进制形式,有效地提高标量乘算法效率。文中将JSF应用到扩展后的系数中,以较小存储空间为代价来提高算法效率,并将算法运用到改进的ECDSA算法中,加速签名验证过程,节约数字签名时间。 The capability of ECC depends on the efficiency of scalar multiplication.Furthermore,fast scalar multiplication algorithm on Koblitz curve is the top demanding task in the research of scalar multiplication.In Lee et al.algorithm,Frobenius map is utilized to expand integer k and each coefficient of the expansion is represented as a binary string.In this paper,with the application of Joint Sparse Form to the coefficients,the efficiency of algorithm is improved at a lower storage requirement.The improved algorithm was applied to promote ECDSA algorithm could accelerate the process of verifying signature and decrease the time of verifying signature.
作者 尹灿 卢忱
出处 《电子科技》 2011年第2期79-82,共4页 Electronic Science and Technology
关键词 KOBLITZ曲线 Frobenius映射 联合稀疏形 标量乘 椭圆曲线数字签名 Koblitz curves frobenius map joint sparse form scalar multiplication ECDSA
  • 相关文献

参考文献10

  • 1Darrel Hankerson.椭圆曲线密码学导论[M].张焕国,等译.北京:电子工业出版社,2005.12-13.
  • 2Koblitz N. An Elliptic Curve Implement of the Finite Field Digital Signature Algorithm [ C ]. Berlin : Springer, Ad- vance in Cryptology- CRYPTO, 1998.
  • 3Solinas J A. Efficient Arithmetic on Koblitz Curves [J] Designs, Codes and Cryptography, 2000, 19 (2 -3 ) 195 - 249.
  • 4白国强,周涛,陈弘毅.一类安全椭圆曲线的选取及其标量乘法的快速计算[J].电子学报,2002,30(11):1654-1657. 被引量:6
  • 5胡磊,冯登国,文铁华.一类Koblitz椭圆曲线的快速点乘[J].软件学报,2003,14(11):1907-1910. 被引量:9
  • 6Avanzi R, Sica F. Scalar Multiplication on Koblitz Curves Using Double Bases[ EB/OL]. (2007 - 03 - 15 ) [ 2010 - 06 - 08 ] http: //iacr. org.
  • 7WongKW, LeeECW, ChengLM, et al. Fast Elliptic Scalar Multiplication Using New Dou - ble - base Chain and Point Halving [ J]. Applied Mathematics and Computation 183, 2006(2) : 1000 - 1007.
  • 8Solinas J A. Low -Weight Binary Represen -tations for Pairs of Integers [ R]. USA : Technical Report CORR, 2001.
  • 9Hasan M A. Power Analysis Attacks and Alg - orithmic Ap- proaches to Their Countermeasures for K - oblitz Curve Cryp- tosystems [J]. IEEE Trans. on Computers, 2001, 50 (10): 1071-1083.
  • 10Lee D H, Chee S, Hwang S C, et al. hnproved Scalar Multiplication on Elliptic Curve Defend Over 2Fn^m [ J ]. ETRI Journal, 2004, 26(3) : 153 - 160.

二级参考文献22

  • 1[1]I Blake,G Seroussi,N Smart.Elliptic Curves in Cryptography[M].Cambridge,United Kingdom:Cambridge University Press,1999.2-10.
  • 2[2]W Meier,O Staffelbach.Efficient Multiplication on Certain Nonsupersingular Elliptic Curves[A].Advances in Cryptology-crypto'92,LNCS 740,Springer-Verlag[C].Berlin.1992,333-344.
  • 3[3]N Smart.Elliptic curve cryptosystems over small fields of odd characteristic[J].Journal of Cryptology,1999,12:141-151.
  • 4[4]D Bailey,C Paar.Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms[A].Advances in Cryptology-Crypto'98,LNCS 1462,Springer-Verlag[C].Berlin:1998.472-485.
  • 5[5]J Silverman.The Arithmetic of Elliptic Curves[M].New York: GTM 106,Springer-Verlag,1986.45-63.
  • 6[6]Guoqiang Bai,Yupu HU,Guozhen Xiao.Method of improving an elliptic curve cryptosystem over the ring zn[J].Chinese Journal of Electronics.2000,19(1):89-91.
  • 7[7]ANSI-X9.63-1998,Public Key Cryptography for Financial Service Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography[S].
  • 8[8]J Solinas.Improved algorithm for arithmetic on anomalous binary curves[R].Canada: CACR of University of Waterloo,2000.
  • 9Menezes AJ, Okamoto T, Vanstone SA. Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions onInformati on Theory, 1993,39(5): 1639-1646.
  • 10Frey G, Riiek HG. A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computation, 1994,62(206):865-874.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部