期刊文献+

高维数据空间的一种网格划分方法 被引量:4

Grid-based division approach for high-dimensional data space
下载PDF
导出
摘要 在高维数据空间的子空间中对高维数据进行处理是减小甚至消除"维度灾难"的一个有效方法。为选择合理的子空间,提出了一种基于网格划分的子空间生成方法。在考虑数据集整体分布的前提下,对各维数据进行等深度的区间划分,为高维数据的后续相关处理奠定了良好的基础。 In order to avoid the curse of dimensionality,it is efficient to deal with high-dimensional data in proper subspaces. This paper puts forward a new idea to form subspaces by dividing high dimensional space into grids,and each dimension is divided into depth-equal grids.The pretreatment of high dimensional data establishes necessary base for succeeding analysis.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第5期152-153,共2页 Computer Engineering and Applications
基金 国家自然科学基金No.60802080~~
关键词 维度灾难 子空间 网格划分 curse of dimensionality subspace grid-based division
  • 相关文献

参考文献3

  • 1Friedman J H.Flexible metric nearest neighbor classification[R]. Department of Statistics,Stanford University, 1994.
  • 2汪祖媛,庄镇泉,王煦法.逐维聚类的相似度索引算法[J].计算机研究与发展,2004,41(6):1003-1009. 被引量:5
  • 3Hans-Peter K, Kroger P,Zimek A.Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering[J].ACM Transactions on Knowledge Dis- covery from Data,2009,3( 1 ) : 1-58.

二级参考文献9

  • 1M Flickner, H Sawhney, W Niblack, et al. Query by image and video content: The QBIC system. IEEE Computer, 1995, 28(9): 23~32
  • 2A Guttman. R-tree: A dynamic index structure for spatial searching. ACM SIGMOD, Boston, MA, 1984
  • 3N Bechmann, H P Kriegel, R Schneider, et al. The R * -tree: An efficient and robust access method for points and rectangles. In:Proc of ACM SIGMOD. Atlantic: ACM Press, 1990. 322~331
  • 4K Norio, Shin' ichi Scaoh. The SR-tree: An index structure for high-dimensional nearest neighbor queries. In: Proc of the 16th ACM SIGACT-SIGMOD-SIGART Symp on PODS. New York:ACM Press, 1997. 369~380
  • 5D A White, R Jain. Similarity indexing with the SS-tree. The 12th Int'l Conf on Data Engineering, New Orleans, LA, 1996
  • 6J T Robinson. The K-D-B-tree: A searching structure for large multidimensional dynamic indexes. ACM SIGMOD, Ann Arbor,USA, 1981
  • 7S Berchtold, D A Keim, H P Kriegel. The X-tree: An index structure for high-dimensional data. The 22nd V1DB Conf,Bombay, India, 1996
  • 8R Weber, S Blott. An approximation-based data structure for similarity search. Institute of Information System, ETHZ, Tech Rep: 24, 1997
  • 9J H Friedman. Flexible metric nearest neighbor classification.Department of Statistics, Stanford University, Tech Rep: 113,1994

共引文献4

同被引文献46

  • 1梁武科,赵道利,黄秋红,吴罗长.基于多传感器信息融合的水轮机导轴承故障诊断方法[J].水力发电学报,2004,23(4):117-121. 被引量:9
  • 2张建锦,吴渝,刘小霞.一种改进的密度偏差抽样算法[J].计算机应用,2007,27(7):1695-1698. 被引量:5
  • 3GU B H, HU F F, LIU H. Sampling and its application in data mining: a survey[ R]. Singapore: National University of Singapore, 2000.
  • 4PALMER C R, FALOUTSOS C. Density biased sampling: an im- proved method for data mining and clustering[ C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000:82 -92.
  • 5NANOPOULOS A, THEODORIDS Y, MANOLOPOULOS Y. In- dexed-based density biased sampling for clustering applications[ J].Data & Knowledge Engineering, 2006, 57(1) : 37 -63.
  • 6APPEL A P, PATERLINI A A, de SOUSA E P M, et al. A densi- ty-biased sampling technique to improve cluster representativeness [ C]// Proceedings of PKDD 2007. Berlin: Springer, 2007:366 - 373.
  • 7HUANG J B, SUN H L, KANG J M, et al. ESC: an efficient syn- chronization-based clustering algorithm [ J]. Knowledge-Based Sys- tems, 2013, 40". 111 - 122.
  • 8ZHAO Y C, CAO J, ZHANG C Q, et al. Enhancing grid-density based clustering for high dimensional data[ J]. Journal of Systems and Software, 2011,84(9) : 1524 - 1539.
  • 9PILEVAR A H, SUKUMAR M. GCHL: a grid-clustering algorithm for high-dimensional very large spatial data bases [ J]. Pattern Rec- ognition Letters, 2005, 26(7) : 999 - 1010.
  • 10Wheeler R, Aitken S.Multiple algorithms for fraud detection[J]. Knowledge-Based Systems, 2000, 13 (2) : 93-99.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部