期刊文献+

NSCT变换的SAR和可见光图像融合 被引量:12

Fusion algorithm of SAR and visible images based on NSCT
下载PDF
导出
摘要 非下采样Contourlet变换同时具有多尺度、多方向选择性、多分辨分析和平移不变性质的特点,对SAR和彩色可见光图像融合的问题,提出一种基于非下采样Contourlet变换和HIS变换相结合的多传感器融合算法。通过对经非下采样Contourlet变换分解得到的不同频域子带系数选择方案的分析,对低频子带系数的选择,提出了一种基于SAR图像与彩色可见光图像物理特征的"加权平均"的系数选择方案;针对各带通方向子带系数的选择,采用绝对值选大多分辨率融合算法。实验以同一场景下ku波段的SAR图像和彩色可见光图像进行算法验证,实验结果和信息熵、均值、相关系数、偏差指数和交叉熵等客观评价数据表明,方法具有较好的融合效果。 Based on the properties of NSCT,multi-scale,multi-directional expansion,multi-resolution analysis and shift invariant,with the fusion problem of SAR and color visible images,a multisensor fusion algorithm using NSCT and HIS transform is presented.In the experiment,the ku-band SAR and color visible images under the same scenario are used to validate this algorithm.The selection principles of the low frequency subband coefficients and bandpass directional subband coefficients are discussed respectively.For the low frequency subband coefficients,"aweighted averaging"scheme based on the physical features of SAR images and color visible images is presented;while for the bandpass directional subband coefficients,a selection principle based on the absolute value of selected major is developed.Evaluation of experimental results according to both the subjective and objective criteria,including the entropy,average,correlation coefficient,deviation index and cross entropy,demonstrates that algorithms grounded on the NSCT are more effective.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第5期166-168,178,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60475021 河南省杰出青年基金(No.0412000400)~~
关键词 图像融合 非下采样CONTOURLET变换 物理特征 HIS变换 image fusion Nonsubsampled Contourlet Transform(NSCT) physical feature HIS transform
  • 相关文献

参考文献11

  • 1Schowengerdt R A.Reconstruction of multi-spatial, multi-spectral image data using spatial frequency content[J].Photogramm Eng Remote Sens, 1980,46(10) : 1325-1334.
  • 2Carper W J, Lillesand T M, Kiefer R W.The use of intensity hue saturation transform for merging SPOT panchromatic and multispectral image data[J].Photogramm Eng Remote Sens, 1990,56(4) :459-467.
  • 3Chavez P S, Kwarteng A Y.Extracting spectral contrast in lan- dast thematic mapper image data using selective principle com- ponent analysis[J].Photogramm Eng Remote Sens, 1989, 55(3): 339-348.
  • 4Garzelli A.Wavelet-based fusion of optical and SAR image da- ta over urban area photogrammetic computer vision[C]//ISPRS Commission III,Symposium 2002,Graz,Austria,2002.
  • 5Do M N, Vetterli M.Contoulet:A direction multiresolution image representation[C]//IEEE International Conference on Image Pro- cessing.Rochester,New York, USA : IEEE, 2002: 357-360.
  • 6焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 7Gonzalez M A,Saleta J L,Catalan R G,et al.Fussion of multi-spectral and panchromatic images using improved HIS and PCA mergers based on wavelet decomposition[J].IEEE Trans on Geo and Remote Sens,2004,23(18) : 1291-1299.
  • 8Do M N,Vetterli M.The Contourlet transform:An efficient direc- tional multiresolution image respresentation[J].IEEE Transactions on Image Processing,2005,14(12) :2091-2106.
  • 9Po D D Y, Do M N.Directional multiscale modeling of images using the contoulet transform[J].IEEE Transactions on Image Processing, 2006,15(6) : 1610-1620.
  • 10Cunha A L,Zhou J P,Do M N.The nonsubsampled Contourlet transform : Theory, design, and applications[J].IEEE Trans on Im- age Processing,2006, 15(10) :3089-3101.

二级参考文献59

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 3[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 4[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 5[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 6[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 7[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 8[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 9[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 10[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.

共引文献227

同被引文献130

引证文献12

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部