期刊文献+

基于混合高斯模型的行人检测方法 被引量:20

Pedestrian detection based on improved Gaussian mixture model
下载PDF
导出
摘要 针对道路交通中行人的特点,从参数更新、背景估计和前景分割三个方面改进传统的混合高斯模型,提出一种有效的行人检测方法。首先,利用基于图像分割的参数更新模型,减少将静止前景判定为背景的可能性;其次,采用前景融合时间调整机制,控制前景融入背景的时间;最后,引入均值权值的概念,优化前景分割的条件。试验结果表明,改进的算法优于传统的混合高斯模型,具有良好的鲁棒性和自适应性,可正确检测出移动速度缓慢或静止的行人。 Aiming at the peculiarity of pedestrian in the road traffic, an effective pedestrian detection method was proposed based on an improved Gaussian mixture model(GMM) in 3 aspects: parameter updating, background estimation and foreground segmentation. The possibility of misjudging the static foreground as the background was reduced using a parameter updating model based on the image segmentation. The time of the foreground merging into the background was controlled applying the adjustment scheme of foreground merging time. The foreground segmentation condition was optimized by introducing the concept of average weight. The test results showed that the improved algorithm is better than the traditional GMM. It is characterized by good robustness and adaptability, able to detect the slow moving even static pedestrian.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第1期41-45,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 '973'国家重点基础研究发展计划项目(2006CB705500) 国家自然科学基金项目(50778015) 中国人民大学科学研究基金项目(07XND012)
关键词 交通运输系统工程 智能交通系统 行人检测 背景提取 混合高斯模型 engineering of communications and transportation system intelligent transportation system pedestrian detection background extraction Gaussian mixture model(GMM)
  • 相关文献

参考文献10

  • 1Malinovskiy Y, Zheng J Y, Wang Y H. A simple and model free algorithm for real-time pedestrian de tection and tracking[C] // The 86th Annual Meeting of the Transportation Research Board, Washington, D. C., 2007.
  • 2Haritaoglu I, Harwood D, Davis L S G. A human body part labeling system using silhouettes[C]// Fourteenth International Conference on Pattern Ree ognition,1998:77 -82.
  • 3洪炳熔,贺怀清.虚拟人的步行和跑步运动控制方法的研究[J].高技术通讯,2001,11(3):91-95. 被引量:30
  • 4Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis[C]//Proc IEEE International Conference on Image Processing, Santa Barbara, California, 1997:78 81.
  • 5李志慧,张长海,曲昭伟,王殿海.交通流视频检测中背景模型与阴影检测算法[J].吉林大学学报(工学版),2006,36(6):993-997. 被引量:16
  • 6Stauffer C, Grimson W E L. Learning patterns of activity using real-time traeking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000:747-757.
  • 7Kaewtrakul P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection[C]//Proceedings of 2nd European Workshop on Advanced Video Based Surveillance Systems, 2001: 149-158.
  • 8Lee D S, Hull J J, Erol B. A Bayesian framework for Gaussian mixture background modeling [C] // Proceedings of International Conference on Image Processing, 2003:973- 976.
  • 9Zhang YC, LiangZZ, HouZG, et al. An adaptive mixture Gaussian background model with onliae background reconstruction and adjustable foreground mergence time for motion segmentation [C]//Proceedings of IEEE International Conference on Industrial Technology, 2005: 23-27.
  • 10Cucchiara R, Grana C, Piccardi M, et al. Improving shadow suppression in moving ohiect detection with HSV color information[C] // Proceedings of IEEE Intelligent Transportation Systems Conference, Oakland, CA, 2001: 334-339.

二级参考文献10

  • 1Ridder C, Munkelt O, Kirchner H..Adaptive background estimation and foreground detection using kalman filtering[ C ] //Proc International Conference on recent Advances in Mechatronics,1995 : 193-199.
  • 2Wren Christopher Richard, Azarbayejani Ali, Darrell Trevor Pfinder. Real-time tracking of the human body[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 780-785.
  • 3Stauffer Chris, Grimson W E L. Adaptive background mixture models for real-time tracking [ J ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, 2: 246-252.
  • 4Kahl F, Hartley R, Hilsenstein V. Novelty detection in image sequences with dynamic background [ C ] //In :Statistical Methods in Video Processing. Berlin:Springer-Verlag Berlin ,2004 : 117-128.
  • 5Li Li-yuan, Gu Irene Yu-Hua, Leung Maylor K H,et al. Adaptive background subtraction based on feedback from fuzzy classification [ J ]. Optical Engineering,2004, 43(10) : 2381-2394.
  • 6Toyama Kentaro, Krumm John, Brumitt Barry, et al.Wallflower: Principles and practice of background maintenance[ C ] //Kerkyra, Greece : Institute of Electrical and Electronics Engineers Inc, Piscataway, N J,USA, 1999:255-261.
  • 7Prati A Cucchiara, Mikic R, Trivedi I M M. Analysis and detection of shadows in video streams: a comparative evaluation[ C]//In: CVPR,2001:571-576.
  • 8Prati A, Mikic I, Trivedi M M,et al. Detecting moving shadows : algorithms and evaluation [ J ]. IEEE Trans Pattern Anal Mach Intell,2003, 25(7) : 918-923.
  • 9Salvador Elena, Cavallaro Andrea, Ebrahimi Touradj.Cast shadow segmentation using invariant color features[J]. Computer Vision and Image Understanding,2004,95(2) : 238-259.
  • 10周健,王承发,高文.虚拟人的建模方法[J].计算机科学,1999,26(1):53-54. 被引量:1

共引文献43

同被引文献160

  • 1赵宏伟,冯嘉,臧雪柏,宋波涛.一种实用的运动目标检测和跟踪算法[J].吉林大学学报(工学版),2009,39(S2):386-390. 被引量:8
  • 2刘皓挺,姜国华,王丽.一种基于Snake模型的多目标跟踪算法[J].计算机工程与应用,2006,42(7):76-79. 被引量:4
  • 3魏娟丽,翟社平,王万诚.视频序列中人体运动目标的检测与跟踪研究[J].计算机应用与软件,2006,23(4):139-141. 被引量:12
  • 4万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 5任明武,杨万扣,王欢,刘治锋,唐振民.一种基于图像的水位自动测量新方法[J].计算机工程与应用,2007,43(22):204-206. 被引量:29
  • 6Friedman N and Russell S. Image segmentation in video sequences: A probabilistic approach[C]//In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers, Inc., San Francisco, CA: 1997.
  • 7Stauffer C and Grimson W E L. Adaptive background mixture models for real-time tracking[C]//In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Cambridge, MA: 1999.
  • 8Choi J M, Yoo Y J and Choi J Y. Adaptive shadow estimator for removing shadow of moving object[J]. Computer Vision and Image Understanding, 2010: 1017-1029.
  • 9MEIER T, NGUN K N. Video segmentation for cintent-based coding [J]. IEEE Trans on Circuits and Systems for Video Technolo- gy, 1999,9 ( 9 ) : 1190-1203.
  • 10PAPENBERG N, BKUHN A, BROX T, et al, Highly accurate optic flow computation with theoretically justified warping[ J ]. Internatio- nal Journal of Computer Vision ,2006,67(2 ) : 141 - 158.

引证文献20

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部