摘要
The changes of chlorophyll_protein complexes and photosynthetic activities of chloroplast isolated from lotus ( Nelumbo nucifera Gaertn.) seeds germinating under illumination were studied. SDS PAGE analysis of chlorophyll_protein complexes showed that there was only the light harvesting chlorophyll a/b protein complex from PSⅡ (LHCⅡ) precursor in chloroplast from lotus seeds germinated for 2 to 6 days, while LHC Ⅱ 1, and the chlorophyll_protein complex of PSⅠ (CPⅠ) appeared on the 8th day of germination and PSⅡ reaction center complex appeared later. Studies on the polypeptides composition of the chloroplast revealed the following results: 1) Small amount of the 27 kD polypeptide was synthesized in invisible light; 2) The 30 kD polypeptide existed previously in the plumules of the dry seeds; 3) The amount of the 30 kD polypeptide was more than any other polypeptides before germination and decreased gradually throughout germination, while the 27 kD polypeptide changed in the opposite way; 4) In the process of germination, measurement of the electron transport rate and the fluorescence induction kinetics at room temperature showed that PSⅡ activities and efficiency of primary light energy transformation were only experimentally measurable after 7 days of germination and gradually increased afterwards. At the same time, the chl a/b ratio rose from the lower value to normal; 5) The changes of chloroplast membrane components and its functions are concomitant in concert with that of the ultrastructure of chloroplast membranes during germination, as shown in our earlier work . The results have proved again that a different developmental pathway of chloroplast is likely to exist in the lotus plumules, which might provide an important clue for N. nucifera in having an unique position in the phylogeny of the angiosperm.
实验研究了莲种子(NelumbonuciferaGaertn.)在光下萌发过程中叶绿体色素蛋白复合体、多肽组成以及PSⅡ光化活性的变化。结果表明,萌发到第6天的莲胚芽叶绿体,在SDSPAGE凝胶柱中只分出两条色素带,分别为捕光叶绿素蛋白复合体(LHCⅡ)和自由色素(FP)。萌发到第8天的莲叶绿体可分出CPⅠ,LHCⅡ1、LHCⅡ和FP。仍未检测到PSⅡ反应中心复合物。多肽分析表明:未萌发和萌发到第2天的叶绿体中30kD多肽的含量显著,尽管27kD多肽在未见光时已开始合成,但其含量很少。随着照光时间增长,30kD多肽含量逐渐减少,27kD多肽的含量逐渐增多,到第12天时超过30kD多肽的含量。电子传递速率和室温荧光诱导动力学的测定表明:PSⅡ光化活性在莲子萌发到第7天时才开始出现,并随萌发时间增加而升高,与此同时Chla/b比值由低到高达到正常值。莲子在光下萌发过程中其叶绿体膜成分及膜功能的变化与它的超微结构的变化相符合。结果再次证明,莲胚芽叶绿体在光下的发育具有与其它高等植物所不同的独特途径,这为莲在被子植物系统发育中占有独特地位的看法提供了依据。