期刊文献+

基于信息熵的社区发现算法研究 被引量:7

Study on Algorithm of Community Detection Based on Information Entropy
下载PDF
导出
摘要 针对现有社区发现依靠出度、入度、介数来进行社会划分的一些不足,研究了依靠信息熵来对社区进行度量,提出了基于信息熵的社区发现算法CDBE(Community Detection Based on Entropy)。如果社区内部信息量大,熵就大。不确定事件发生的概率就大。社区具有凝聚力,信息的熵相对稳定,不会出现熵剧烈增加或减少的情况,根据节点集合熵的变化是否剧烈,可以判断节点是否是社区的成员,从而实现社区的发现。实验表明,CDBE能够发现有价值的社区。 There are some faults of present community detection algorithm,which is based on the in degree,out degree and betweenness of nodes,we presented a algorithm based on Entropy to detect community structure.A community includes many information and it's Entropy.Members of a community have some common gains or interests,we think that if a member want to join a community,it can't make the entropy of the community exceed a threshold,otherwise it can't be the member of a exist community.Our experiments show the processing and the efficiency of our algorithms.
作者 王刚 钟国祥
出处 《计算机科学》 CSCD 北大核心 2011年第2期238-240,共3页 Computer Science
基金 陕西省教育厅项目(09JK317) 基于本体的服务研究(AYQDZR200916) 智能信息处理技术关键问题及应用研究(2008akxy005)资助
关键词 社区发现 信息熵 推荐系统 数据挖掘 Community detection Information entropy Recommendation system Data mining
  • 相关文献

参考文献7

二级参考文献33

共引文献24

同被引文献101

  • 1张成虎,赵小虎.基于决策树算法的洗钱交易识别研究[J].武汉理工大学学报,2008,30(2):154-156. 被引量:9
  • 2唐敏.关联规则挖掘算法在超市销售分析中的应用[J].计算机科学,2006,33(2):149-150. 被引量:12
  • 3黄光球,魏芳.基于贝叶斯动态预测模型的商品推荐方法[J].微计算机信息,2007,23(05X):133-134. 被引量:3
  • 4范明,孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2002.
  • 5PALLA G, DERENYI I, FARKAS I. Uncovering the overlapping community structures of complex networks in nature and society [ J]. Nature, 2005, 435(7043): 814-818.
  • 6LANCICHINETYI A, FORTUNATO S, KERTESZ J. Detecting the overlapping and hierarchical community structure in complex net- works [J]. New Journal of Physics, 2009, 11(3): 033015.
  • 7JIN D, YANG B, BAQUERO C. A Markov random walk under con- straint for discovering overlapping communities in complex networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2011:P05031.
  • 8LEE C, REID F, MCDAID A. Detecting highly overlapping com- munity structure by greedy clique expansion [ C]// Proceedings of the 4th International Workshop on Social Network Mining and Analy- sis. New York: ACM, 2010:33-42.
  • 9ZHENG Z B, MA H, LYU M R, et al. QoS-aware Web service rec- ommendation by collaborative filtering [ J]. IEEE Transactions on Services Computing, 2011,4(2) : 140 - 152.
  • 10WU J, CHEN L, FENG Y P, et al. Predicting quality of service for selection by neighborhood-based collaborative filtering [ J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(2): 428-439.

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部