摘要
针对现有社区发现依靠出度、入度、介数来进行社会划分的一些不足,研究了依靠信息熵来对社区进行度量,提出了基于信息熵的社区发现算法CDBE(Community Detection Based on Entropy)。如果社区内部信息量大,熵就大。不确定事件发生的概率就大。社区具有凝聚力,信息的熵相对稳定,不会出现熵剧烈增加或减少的情况,根据节点集合熵的变化是否剧烈,可以判断节点是否是社区的成员,从而实现社区的发现。实验表明,CDBE能够发现有价值的社区。
There are some faults of present community detection algorithm,which is based on the in degree,out degree and betweenness of nodes,we presented a algorithm based on Entropy to detect community structure.A community includes many information and it's Entropy.Members of a community have some common gains or interests,we think that if a member want to join a community,it can't make the entropy of the community exceed a threshold,otherwise it can't be the member of a exist community.Our experiments show the processing and the efficiency of our algorithms.
出处
《计算机科学》
CSCD
北大核心
2011年第2期238-240,共3页
Computer Science
基金
陕西省教育厅项目(09JK317)
基于本体的服务研究(AYQDZR200916)
智能信息处理技术关键问题及应用研究(2008akxy005)资助
关键词
社区发现
信息熵
推荐系统
数据挖掘
Community detection
Information entropy
Recommendation system
Data mining