期刊文献+

基于死区补偿的神经网络自适应鲁棒控制

Neural Network Adaptive Robust Control based on Dead time compensation
下载PDF
导出
摘要 机器人执行机构的死区非线性对系统性能有较大影响。本文采用具有快速学习能力的RBF神经网络代替经典补偿器中的BP增广网络,设计了死区补偿的RBF网络自适应鲁棒控制,不但可以大大减少系统参数,还可以使得网络的初始化工作清晰明确。同时引入了GL矩阵和GL乘法算子的数学概念,从而在数学上严格证明了n节关节机器人系统的稳定性问题。仿真结果表明,所提方法具有良好的跟踪性能和较强的鲁棒性。 Executive body of the dead nonlinear has greater influence on the system's performance. In this paper, the dead zone compensation of RBF network adaptive robust control were designed by Using the RBF neural network instead of classic compensator of BP network.It can greatly reduce the system parameters and also make the network initialization work clear. GL and the GL matrix multiplication operator were introduced and thus mathematically rigorous proof of the n section joint robot system stability.The simulation results show that this method has good tracking performance and strong robustness.
作者 肖斌 汪敏
出处 《微计算机信息》 2011年第2期84-85,8,共3页 Control & Automation
关键词 死区补偿 RBF神经网络 鲁棒自适应控制 Dead-time Compensation RBF neural networks robust adaptive control
  • 相关文献

参考文献6

二级参考文献15

  • 1卢润德,陈以.对最经济控制问题研究拓展的探讨[J].工业工程与管理,2005,10(3):73-77. 被引量:4
  • 2涂序彦.可控性、可观性的实用价值与最经济结构综合[J].全国控制理论及其应用学术交流会论文集.北京:科学出版社,1981,56-61.
  • 3Ming Chen,Zhengwei Yao.Classification Techniques of Neural Networks Using Improved Genetic Algorithms [J].Second International Conference on Genetic and Evolutionary Computing , 2008,115-119.
  • 4K.Socha and C.Blum.An ant colony optimization algorithm for continuous optimization:application to feed-forward neural network training[J].Neural Computing&Applications,vol. 16,2007,235-247.
  • 5Masugi M.,Kobayshi R.. Pulse response correction of EMI measurement sensor based on neural network. Transactions of the Institute of Electronics, Information and Communication Engineers B-Ⅱ,1997,J80B-Ⅱ(10):925~927.
  • 6Garullo A., Ferraris F.,et al.. Ultrasonic distance sensor improvement using a two-level neural-network. IEEE Transactions on Instrumentation and Measurement,1996,45(20):677~682.
  • 7Qingbao Zhu. A direct weight address mapping low-dimensional cerebellar model neural networks(LCMAC).ESSAN'2001,The 9th European Symposium on Artificial Neural Networks, Belgium,April 2001.
  • 8Jar-Shone Ker, Yau-Hwang Kuo,et al.. Hardware implementation of CMAC neural network with reduced storage requirement. IEEE Transactions on Neural Networks,1997,8(6):1545~1556.
  • 9Chun-Shin Lin, Ching-Tsan Chiang. Integration of CMAC technique and weighted regression for efficient learning and output differentiablity. IEEE Transactions on Systems, Man and Cybernetics, Part B,1998,28(2):231~237.
  • 10李冉,陈以.基于UD和GA的神经网络最经济参数的研究[J].微计算机信息,2007,23(31):295-296. 被引量:2

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部