期刊文献+

利用实矩阵的谐波谐振评估及其灵敏度分析 被引量:4

Harmonic Resonance Assessment and Its Sensitivity Analysis Using Real Matrix
原文传递
导出
摘要 为了克服模态分析技术中解耦复矩阵时存在的计算量大、运算效率低的不足,分别建立了利用复矩阵与实矩阵的谐波谐振分析方法,通过比较上述两种方法的阻抗分析结果、特征根轨迹、谐振频率、关键特征值、参与因子及灵敏度值,在一个典型的工业系统上进行的理论与仿真分析及算例研究得出:利用实矩阵的模态分析结果和模态灵敏度分析结果与利用复矩阵的分析结果相近,且利用实矩阵的运算可以避免复杂的复数运算。研究结果表明,提出的利用实矩阵的谐波谐振分析方法简单、有效,可用于确定谐波谐振的内在信息及各个网络元件对谐波谐振的贡献大小。 In order to overcome the drawbacks of complex matrix,such as complicated computation and inefficient calculation in modal analysis.Methods for analyzing the complex matrix-and real matrix-based harmonic resonance were established to compare modal impedances,eigenvalue loci,resonance frequency,critical eigenvalues,participation factors and normalized sensitivities,respectively.Theoretical and simulation analyses,along with case studies using a typical industrial test system,show that the results from modal analysis and modal sensitivity by complex matrix method are similar to those derived from real matrix method.Furthermore,complex computation could be avoidable by real matrix-based model analysis method.Therefore,this method was simple,effective and applicable in the determination of the harmonic resonance potentials and the contributions of various network components to a resonance situation.
出处 《高电压技术》 EI CAS CSCD 北大核心 2011年第2期491-496,共6页 High Voltage Engineering
基金 湖南省自然科学基金(2009FJ3049)~~
关键词 谐波谐振 模态分析 特征值 灵敏度分析 实矩阵分解 复矩阵分解 harmonic resonance modal analysis eigenvalue sensitivity analysis real matrix decoupling complex matrix decoupling
  • 相关文献

参考文献24

  • 1Ahu Bakar M I. Assessments for the impact of harmonic current distortion of non linear load in power system harmonics[C]// Transmission and Distribution Conference and Exposition, Latin America. [S.l. ]: IEEE, 2008: 1-6.
  • 2张博,鲁铁成,杜晓磊.中性点接地系统铁磁谐振非线性动力学分析[J].高电压技术,2007,33(1):31-35. 被引量:31
  • 3Chang G W. Characterizing harmonic currents generated by fluorescent lamps in harmonic domain[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1583-1585.
  • 4周志成,何俊佳,陈俊武,邹云屏.TV谐波铁磁谐振检测方法的探讨[J].高电压技术,2009,35(2):266-271. 被引量:3
  • 5Dugan R C, McGranaghan M F, Beaty H W. Electrical power systems quality[M]. New York, USA: McGraw-Hill, 1996.
  • 6杨秋霞,宗伟,田璧元.基于小波分析的铁磁谐振检测[J].电网技术,2001,25(11):55-57. 被引量:33
  • 7IEEE Working Group on Power System Harmonics. The effects of power system harmonics on power system equipmem and loads[J].IEEE Transaction on Power Apparatus and Systems, 1985, 104(9) :2555 -2563.
  • 8徐政,裘鹏,黄莹,黎小林.采用时域仿真的高压直流输电直流回路谐振特性分析[J].高电压技术,2010,36(1):44-53. 被引量:28
  • 9IEEE Harmonic Model and Simulation Task Force. Modeling and simulation of the propagation of harmonics in electric power networks: part I[J]. IEEE Transaction on Power Delivery, 1996, 11(1):466-474.
  • 10Johnson J R. Managing harmonics and resonance with active harmonic filters in an offshore ring main oil field[C] //Harmonics and Quality of Power. [S. l. ]: [s. n. ], 2008: 1-8.

二级参考文献137

共引文献204

同被引文献31

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部