期刊文献+

颗粒增强复合材料的扩展有限元模拟方法 被引量:7

Numerical simulation of particle reinforced composite using extended finite element method
下载PDF
导出
摘要 为了简化颗粒增强复合材料的单元划分问题,采用扩展有限元的富集技术模拟材料的非均质性。在扩展有限元理论框架下,无须严格按照材料的几何边界划分计算网格,从而使单元划分十分简便。利用水平集函数来表征夹杂材料的几何界面,并构造富集函数以修正与材料界面相交单元的形函数。对于包含多种材料的单元,只需要进行单元分解,分区域形成单元刚度矩阵。阐述了扩展有限元位移模式的构造,支配方程的建立以及数值积分方案等。最后,分别应用扩展有限元和常规有限元方法模拟了单轴受拉的颗粒增强材料,计算结果表明扩展有限元方法是简单有效的。 To simplify the generation of elements of FEM for particle reinforced composites,the enrichment technique for extended finite element method (XFEM) was used to account for the material interfaces.In the framework of XFEM,it is unnecessary to match the internal features of the inclusions during mesh generation,so it can be performed easily.The geometry of material distribution is described by level set function,which allows one to construct the enrichment function.The enrichment function was used to improve the shape function of classical FEM for the nodes supporting the elements cut by the interface.The key techniques of XFEM were presented,including construction of displacement pattern,establishment of the governing equation and scheme of numerical integration.Finally,the particle reinforced composits with three kinds of distributions of particle under uniaxial tension was simulated by XFEM and FEM,respectively.The comparison of the calculation results show that XFEM is highly effective and efficient.
出处 《水利学报》 EI CSCD 北大核心 2011年第2期198-203,共6页 Journal of Hydraulic Engineering
基金 国家自然科学基金重点项目(50539030-1-1) 国家自然科学基金项目(50779011)
关键词 扩展有限元法 颗粒增强材料 水平集函数 数值积分 extended finite element method particle reinforced composite level set method numerical integration
  • 相关文献

参考文献17

  • 1Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J] . International Journal for Numerical Methods in Engineering, 1999, 46( 1 ) : 131-150.
  • 2Sukumar N, Chopp D L, Mose N, et al. Modeling holes and inclusions by level set in the extended finite-element method[J ] . Computer methods in Applied Mechanics and Engineering, 2001, 190(46-47) : 6183-6200.
  • 3Moes N, Cloirec M, Cartraud P, et al . A computational approach to handle complex microstrueture geometries [J]. Computer methods in applied mechanics and engineering, 2003, 192(28) : 3163-3177 .
  • 4Dolbow J, Nadeau J . On the use of effective properties for the fracture analysis of mcrostructured materials [J] . Engineering Fracture Mechanics, 2002, 69(14-16): 1607-1634.
  • 5Chessa J, Belytschko T. An Extended Finite Element Method for Two-Phase Fluids [J] . Journal of Applied Mechanics, 2003, 70(1) : 10-17.
  • 6李建波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展有限单元法(Ⅰ:基础理论)[J].计算力学学报,2006,23(2):207-213. 被引量:13
  • 7李建波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展有限单元法(2:数值实现)[J].计算力学学报,2006,23(3):317-323. 被引量:8
  • 8方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型[J].清华大学学报(自然科学版),2007,47(3):344-347. 被引量:43
  • 9Sethian J A . A marching level set method for monotonically advancing fronts [J] . Proceedings of the National Academy of Sciences, 1996, 93(4) : 1591-1595 .
  • 10Melenk J M, Bubska I . The partition of the unity finite element method: basic theory and applications [J] . Computer methods in Applied Mechanics and Engineering, 1996, 139 : 289-314.

二级参考文献167

共引文献312

同被引文献74

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部