期刊文献+

不同基函数对RBF-ARX模型的影响 被引量:4

Effect of different basis functions on RBF-ARX model
下载PDF
导出
摘要 研究了高斯函数、多二次函数、逆多二次函数、薄板样条函数、三次函数和线性函数对RBF-ARX模型的影响。选取Mackey-Glass混沌方程、Lorenz吸引子和Box-Jenkins煤气炉3种标准时间序列作为测试模型的数据,采用一种快速收敛的结构化非线性参数优化方法辨识RBF-ARX模型。研究结果表明:最优基函数的选择并不一定是最常用的高斯函数,而是与问题相关,因而,在实际建模中,评价各种基函数有助于选择最优结构的RBF-ARX模型。 The effects of different basis functions including Gaussian,multiquadratic,inverse multiqudratic,thin plate spline,cubic and linear on the radial basis function network-style coefficients auto regressive model with exogenous variable(RBF-ARX) model were examined.Several benchmark time series including Mackey-Glass,Lorenz attractor and Box-Jenkins gas furnace were used as the test data.A fast-converging estimation method was applied to optimizing the RBF-ARX model parameters.The simulation results show that the optimal choice of basis function is not a normal Gaussian function but a problem dependent and evaluating all the recognised basis functions suitable for the RBF-ARX model is advantageous.
作者 甘敏 彭辉
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第6期2231-2235,共5页 Journal of Central South University:Science and Technology
基金 湖南省科技计划国际合作重点资助项目(2009WK2009) 国家创新研究群体科学基金资助项目(70921001)
关键词 径向基函数 RBF-ARX模型 建模 radial basis functions RBF-ARX model modeling
  • 相关文献

参考文献15

  • 1喻寿益,王吉林,彭晓波.基于神经网络的铜闪速熔炼过程工艺参数预测模型[J].中南大学学报(自然科学版),2007,38(3):523-527. 被引量:21
  • 2李彦斌,李存斌,宋晓华.改进的人工智能神经网络预测模型及其应用[J].中南大学学报(自然科学版),2008,39(5):1054-1058. 被引量:11
  • 3PENG Hui,Ozaki T,Haggan-Ozaki V,et al.A parameter optimization method for the radial basis function type models[J].IEEE Transactions on Neural Networks,2003,14(2):432-438.
  • 4PENG Hui,Ozaki T,Toyoda Y,et al.RBF-ARX model based nonlinear system modeling and predictive control with application to a NOx decomposition process[J].Control Engineering Practice,2004,12(2):191-203.
  • 5PENG Hui,YANG Zi-jiang,GUI Wei-hua,et al.Nonlinear system modeling and robust predictive control based on RBF-ARX model[J].Engineering Applications of Artificial Intelligence,2007,20:1-9.
  • 6Peng H,Nakano K,Shioya H.Nonlinear predictive control using neural nets-based local linearization ARX model-stability and industrial application[J].IEEE Transactions on Control Systems Technology,2007,15(1):130-143.
  • 7Peng H,Wu J,Inoussa G,PENG Hui,et al.Nonlinear system modeling and predictive using RBF nets-based quasi-linear ARX model[J].Control Engineering Practice,2009,17(1):59-66.
  • 8Haggan-Ozaki V,Ozaki T,Toyoda Y.An akaike state-space controller for RBF-ARX models[J].IEEE Transactions on Control Systems Technology,2009,17(1):191-198.
  • 9Bishop C M.Neural networks for pattern recognition[M].Oxford:Clarendon Press,1995:164-190.
  • 10Shi Z,Tamura Y,Ozaki T.Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model[J].International Journal of System Science,1999,30(7):717-727.

二级参考文献23

共引文献30

同被引文献21

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部