期刊文献+

基于遗传算法和支持向量机的肺结节检测 被引量:7

Lung Nodule Detection by GA and SVM
原文传递
导出
摘要 针对圆点滤波器不能区分粘连血管型结节、血管端点和血管交叉结构,造成假阳率高的问题,提出基于改进遗传算法封装模型的特征选择算法,并把最优特征组合输入到支持向量机分类器,该分离器能做到检测肺结节时漏检率低同时降低假阳率。选出七个特征(其中包含两种新提出的特征)作为最优特征组合。用含有肺结节的CT影像数据库(50个结节和961个假阳)测试分类器的性能,得到敏感性100%和特异性95.5%的效果。实验结果表明,该框架和算法能应用到临床中来提高影像科医生的阅片效率。改进的遗传算法比传统的遗传算法能搜索到更优的特征组合。 To solve the problem that the vascular adhesion nodule and vascular-crossing could not be distinguished by dot filter and make high rate of false positive,a feature subset selection method based on improved genetic algorithms in wrapper model was proposed,and the best feature subset was used to establish a classifier based on support vector machines to improve the performance by reducing false positive and retaining true nodule.From 22 features(including three newly proposed features) which were calculated for each detected structure,seven features were selected as the optimal feature subset.And the classifier trained with the optimal feature subset resulted in 100% sensitivity and 95.5% specificity from the lung nodule database(50 true nodules and 961 false ones).Experiments show that the framework and the approach can be applied in clinic and ease the workload of the radiologist in interpreting lung CT scans;at the same time,the same method can also be applied to other computer-aided detection fields such as detection of mammary tumor.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第3期497-501,566,共6页 Journal of System Simulation
基金 国家自然科学基金(60671050)
关键词 肺结节检测 遗传算法 支持向量机 特征选择 粘连血管型结节 lung nodule detection genetic algorithms support vector machines feature selection vascular adhesion nodule
  • 相关文献

参考文献10

  • 1Brown MS, Goldin JG, Suh RD, et al. Lung micronodules: automated method for detection at thin-section CT-initial results [J]. Radiology (S0033-8419), 2003, 226(1): 256-62.
  • 2S Armato III, M Giger, H MacMahon. Automated detection of lung nodule in CT scans: preliminary results [J]. Med. Phys. (S0094-2405), 2001, 28(8): 1552-1561.
  • 3Yongbum Lee, Takeshi Hara, Hiroshi Fujita, et al. Automated Detection of Pulmonary Nodules in Helical CT Images Based on and Improved Template-Matching Technique [J]. IEEE Trans Medical Imaging (S0278-0062), 2001, 20(7): 595-603.
  • 4Kyongtae T Bae, Jin-Sung Kim, Yong-Hum Na, et al. Pulmonary Nodules: Automated Detection on CT Images with Morphologic Matching Algorithm-Preliminary Results [J]. Radiology (S0500-7208), 2005, 236(6): 286-294.
  • 5David S Paik, Christopher F, Beaulieu, et al. Surface Normal Overlap A Computer-Aided Detection Algorithm With Application to Colonic Polyps and Lung Nodules in Helical CT [J]. IEEE Trans Medical Imaging (S0278-0062), 2004, 23(6): 661-675.
  • 6Qiang Li, Shusuke Sone, Kunio Doi. Selective Enhancement Filters for Nodules, Vessels, and Airway Walls in Two- and Three- dimensional CT Scans [J]. Med Phys (S0094-2405), 2003, 30(1): 2040-2051.
  • 7W A H Mousa, M A U Khan. Lung nodule classification utilizing support vector machines [C]//Proc. Int. Conf. Image Processing (S3-7908- 1509-8/1615-3871). Rochester, NY, USA: IEEE, 2002, 3: 153-156.
  • 8K Suzuki, S G Armato III, F Li, et al. Proc. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography [J]. Med Phys. ($2222-2233), 2003, 30(6): 1602-1617.
  • 9孙申申,李宏,康雁,赵宏.均值漂移带宽选取新方法及其在分割肺结节中的应用[J].东北大学学报(自然科学版),2008,29(9):1270-1273. 被引量:2
  • 10Holland JH. Adaptation in Natural and Artificial Systems [M]. 2nd ed. Michigan, USA: University of Michigan Press, 1992.

二级参考文献9

  • 1周芳芳,樊晓平,叶榛.均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841-847. 被引量:59
  • 2Kostis W J, Reeves A P, Yankelewitz D F, et al. Three- dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images [J]. IEEE Trans on Medical Imaging, 2003,22(10) : 1259 - 1274.
  • 3Henschke C I, Yankelewitz D F, Mirtcheva R, et al. CT screening for lung cancer: frequency and significance of partsolid and non.lid nodules[J]. A JR, 2002, 178 ( 5 ) : 1053 -1057.
  • 4Shen H, Goebel B, Odry B. A new algorithm for local surface smoothing with application to chest wall nodules segmentation in lung CT data[J]. Medical Imaging, 2004,5370(5): 1519 - 1526.
  • 5Okada K, Comaniciu D, Krishnan A. Robust anisotropic Gauasian fitting for volumetric characterization of puhnonary nodules in muhisllce CT [ J ]. IEEE Trans on Medical Imaging, 2005,24(3) :409 - 423.
  • 6Comaniciu D. An algorithm for data-driven bandwidth selection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(2) :281 288.
  • 7Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels,, and airway walls in two- and three- dimensional CT scans [J]. Medical Physics, 2003,30 ( 8 ) : 2040 - 2051.
  • 8Leung Y, Zhang J S, Xu Z B. Clustering by scale-space filtering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22(12) : 1396 1409.
  • 9Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection[C]//Proc of the IEEE Int Conf on Computer Vision. Vancouver: IEEE, 2001 : 438 - 445.

共引文献1

同被引文献52

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部