摘要
利用质量分布原理与自然覆盖,对一类满足强分离条件的非齐次Moran集的Hausdorff测度进行了研究.证明了主要结论:对于由({nk}k≥1,{Φk}k≥1,{mk}k≥1)确定的非齐次Moran集E,它的s维Hausdorff测度是各同级相似比ci,j的s次幂的和,随i从1到k作乘积,并求当压缩次数k趋于无穷大时的乘积的极限值.
With the mass distribution theory and natural cover,the paper studied a kind of Hausedorff measure of non-homogeneous Moran sets which satisfy the strong separation condition,and proved the following conclusions: for the non-homogeneous Moran sets E determined by({nk}k≥1,{Φk}k≥1,{mk}k≥1),its s dimension Hausedorff measure is got by multiplying the sum of s powers of the same level ratio ci,j from 1 to k according to i.The limit is also derived on the condition that k,the times of compression,tends to ∞.
出处
《中北大学学报(自然科学版)》
CAS
北大核心
2011年第1期63-66,共4页
Journal of North University of China(Natural Science Edition)