期刊文献+

基于低精度GPS的智能车视觉导航方法 被引量:10

Low Accuracy GPS and Vision Based Method for Intelligent Vehicle Navigation
下载PDF
导出
摘要 针对室外环境提出了一种基于低精度GPS的视觉导航方法.采用多传感器融合的方法解决道路和路口的导航问题.对于路口环境,通过对道路标志(如人行横道线)的检测,实现路口的初定位;基于全局地图信息,采用扩展卡尔曼滤波融合GPS和里程计信息,进行路口导航.真实环境下的实验结果表明该方法,具有良好的有效性和实时性. This paper proposed a visual navigation method for outdoor environment based on low accuracy GPS.Outdoor environment consists of intersections and roads.The navigation methods for the neatly-structured environment are not suitable for the environment with intersections.Thus,this paper applies a multi-sensor fusion method to navigation in the road intersections and the common roads' situation.For the intersection issues,preliminary location is conducted by intersection detection(such as zebra crossing).Then,based on world map,an extended Kalman filter(EKF) is used for fusing the GPS and odometer information to position in the intersections.The experimental results in the real situation prove that the method is efficient and can well satisfy the real-time request.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第2期168-172,178,共6页 Journal of Shanghai Jiaotong University
基金 世博科技专项基金(10dz0581100) 教育部博士点基金(20070248097)
关键词 智能车 视觉导航 道路检测 扩展卡尔曼滤波 路口定位 intelligent vehicle visual navigation road detection extended Kalman filter(EKF) intersection location
  • 相关文献

参考文献7

  • 1Thrun S, Montemerlo M, Dahlkamp H, et al. Stan- ley: The robot that won the DARPA grand challenge [J]. Journal of Field Robotics, 2006,23 (9) : 661-692.
  • 2Darms M S, Rybski P E, Baker C, etal. Obstacle de- tection and tracking for the urban challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2007,10(3) : 475-483.
  • 3Cummins M, Newman P. FAB-MAP: Probabilistic localization and mapping in the space of appearance [J]. International Journal of Robotics Research, 2008, 27(6) :647-665.
  • 4Mattern N, Schubert R, Wanielik G. Image landmark based positioning in road safety applications using high accurate maps[J]. IEEE/ION Position, Location and Navigation Symposium, 2008, 5(8) : 1008-1013.
  • 5Welch G, Bishop G. An introduction to the kalman ill- ter[EB/OL]. (2007-03-08) [2010-05-26]. www. cs. unc. edu/-welch/kalman/kalmanIntro. html.
  • 6CyberC3 Group. The algorithm demonstration of road detection[EB/OL]. (2010-05-18) [2010-05-27]. ht- tp://v. youku. com/v show/id_XMTczOTIOMzY4. ht- ml.
  • 7李颢.基于视觉的智能车辆自主导航方法研究[D].上海:上海交通大学电子信息与电气工程学院,2008.

同被引文献86

  • 1吴万清,钟世明,朱才连.一种提高车辆导航系统定位精度的方法[J].传感器技术,2004,23(12):62-65. 被引量:1
  • 2孙棣华,张星霞,张志良.地图匹配技术及其在智能交通系统中的应用[J].计算机工程与应用,2005,41(20):225-228. 被引量:23
  • 3严恭敏,秦永元,马建萍.车载导航系统动态高精度初始对准技术[J].系统工程与电子技术,2006,28(9):1404-1407. 被引量:12
  • 4徐璐,陈阳舟,居鹤华.基于动态行为控制的移动机器人自主避障[J].计算机工程,2007,33(14):180-182. 被引量:16
  • 5Konolige K, Agrawal M, Sola J. Large-scale visual odometry for rough terrain [J]. Robotics Research, 2011,66: 201-212.
  • 6Scaramuzza D, Siegwart R. Appearance guided mo- nocular omnidirectional visual odometry for outdoor ground vehicles [J]. IEEE Transactions on Robotics,2008, 24(5):1015-1026.
  • 7Comport A I, Malls E, Rives P. Real time quadri[ocal visual odometry[J]. Robotics Research, 2010, 29(2- 3):245-266.
  • 8Olson C F, Matthies L H, Schoppers M, etal. Stereo ego-motion improvements for robust rover navigation [J]. IEEE Conference on Robotics and Automation, 2001, 2:1099-1104.
  • 9Dubbelman G, Groen F C A. Bias reduction for stereo based motion estimation with applications to large scale visual odometry[J]. IEEE Conference on Computer Vi- sion and Pattern Recognition, 2009,1: 2222-2229.
  • 10Loose H, Franke U. B-spline-based road model for 3d lane recognition [J]. IEEE Conference on Intelligent Transportation Systems, 2010,1 : 91 98.

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部