期刊文献+

基于嵌入式的稻米形态特性分析仪的开发 被引量:1

Developing Rice Morphology Analyzer Based on Embedded System
下载PDF
导出
摘要 设计了一套基于嵌入式的稻米形态特性分析仪,针对优质稻米品质参数检测的实际需要,在设计稻米图像采集装置的基础上,系统以基于ARM内核的S3C2410平台为硬件开发环境,利用嵌入式Linux系统,通过USB图像驱动程序移植,实现了对稻米图像的采集及保存过程,在此基础上,结合图像处理与模式识别技术,编写相应的图像分析应用程序,获得稻米形态品质的国标参数,实现了对稻米整精米率、垩白粒率、垩白度、粒型的快速无损检测。 In order to satisfy the parameter testing of rice quality,a morphology analyzer for rice based on the Embedded System was developed.Based on design of the equipment to capture rice image,ARM core S3C2410 platform was adopted as hardware environment,and the embedded linux system as software environment.After transplantation of USB image driver,the system fulfilled the image capture and image preservation.Finally,combining image processing and mode-identifying technology,an applicative program was compiled and the GB parameters about morphological indexes of rice were obtained.Results:Based on this system it is realized to test rapidly and nondestructively the parameters about head rice rate,chalkiness degree,chalky grain rate,and rice shape type.
出处 《中国粮油学报》 EI CAS CSCD 北大核心 2011年第1期113-116,共4页 Journal of the Chinese Cereals and Oils Association
基金 河南省科技攻关项目(0624100003)
关键词 稻米品质 嵌入式LINUX 图像处理 国标参数 rice quality embedded Linux image processing GB parameter
  • 相关文献

参考文献14

二级参考文献50

共引文献241

同被引文献34

  • 1熊凌.计算机视觉中的图像匹配综述[J].湖北工业大学学报,2006,21(3):171-173. 被引量:22
  • 2谭佐军,王贤峰,卢军.基于差分投影法实现仓储害虫图像的精确定位[J].农机化研究,2007,29(1):91-93. 被引量:6
  • 3戴之祥,邵陆寿,丁克坚,韦韫,葛婧.基于可见光图像的水稻植株含水率检测技术[J].农业机械学报,2007,38(3):200-201. 被引量:6
  • 4Bebis G, Egbert D, Shah M. Review of computer vision education [J]. IEEE Transactions on Education. 2003, 46(1).
  • 5Chen Y, Chao K, Kim M S. Machine vision technology for agricul- tural [J]. Computers and Electronics in Agriculture. 2002, 36: 173- 191.
  • 6Zobel R W. Sensitivity Analysis of Computer-Based Diameter Mea- surement from Digital Images [J]. Crop Sci. 2003, 43: 583-591.
  • 7Igathinathane C, Pordesimo L O, Columbus E P, et al. Shape identi- fication and particles size distribution from basic shape parameters using Image [J].Computers and Electronics in Agriculture. 2008, 63: 168-182.
  • 8Igathinathane C, Pordesimo L O, Columbusa E P, et al. Sieveless particle size distribution analysis of particulate materials through computer vision [J]. Computers and Electronics in Agriculture. 2009, 66: 147-158.
  • 9Guevara-Hemandez F, Gomez-Gil J. A machine vision system for classification of wheat and barley grain kernels [J]. Spanish Journal of Agricultural Research. 2011, 9(3): 672-680.
  • 10Granitto P M, Navone I-I D, Verdes P F, et al. Weed seeds identifi- cation by machine vision [J]. Computers and Electronics in Agri- culture. 2002, 33: 91-103.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部