期刊文献+

基于聚类排挤小生境遗传算法的配电网无功规划研究 被引量:6

Research on reactive power planning of distribution network based on the clustering crowding niche genetic algorithm
下载PDF
导出
摘要 针对应用传统排挤小生境遗传算法进行无功规划时,小生境数目设定值的不同会导致寻优结果波动性较大的情况,将聚类分析和排挤小生境遗传算法相结合应用于配电网无功规划。建立了以收益净现值为目标函数的数学模型,该模型更直观地反映了补偿方案的降损节能收益能力;利用聚类排挤小生境遗传算法对配电网进行无功规划,通过调整聚类距离控制收敛到的小生境数目,提高了算法的全局寻优能力和解的稳定性;采用面向对象的Visual 2005C#高级语言开发编制了配电网无功规划计算程序。实例分析表明所提算法收敛速度快,全局寻优能力强,计算结果稳定高,具有更高的实用性。 Regarding to the defects that different setting values of niche numbers will result in large fluctuation of optimal searching results when traditional crowding niche genetic algorithm is applied to the reactive power planning of distribution network,the clustering crowding niche genetic algorithm is put forward.A mathematical model is proposed with the objective function of maximum net benefit in present value,and the model shows the benefit of power loss reduction vividly.The clustering and crowding niche genetic algorithm is combined to the reactive power planning of distribution network,through controlling the niche numbers converged via adjusting clustering distance,it enhances the ability of global optimization and the stability of results.The program for reactive power planning calculation is developed by Visual 2005C#,and the test results show that the method not only has strong convergence,rapid global optimization speed,and high stability of results,but also has higher availability.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2011年第5期27-30,共4页 Power System Protection and Control
基金 国家863高技术基金项目(2008AA05Z216) 保定市科学技术研究与发展指导计划项目(10ZG001)
关键词 无功规划 配电网 聚类排挤小生境遗传算法 收益净现值 reactive power planning distribution network clustering crowding niche genetic algorithm net present value
  • 相关文献

参考文献11

二级参考文献71

共引文献156

同被引文献63

  • 1袁晓辉,王乘,张勇传,袁艳斌.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19. 被引量:220
  • 2吴义纯,丁明.基于蒙特卡罗仿真的风力发电系统可靠性评价[J].电力自动化设备,2004,24(12):70-73. 被引量:90
  • 3颜伟,徐郑.10kV馈线无功补偿选点的负荷功率阻抗矩方法[J].电力系统及其自动化学报,2005,17(5):29-33. 被引量:18
  • 4刘君华,方鸽飞,吕岩岩.基于灵敏度法确定无功补偿地点[J].电力系统及其自动化学报,2006,18(4):58-61. 被引量:40
  • 5Dulce F P, Martins A G Antunes C H. A multiobjective model for vat planning in radial distribution networks based on Tabu search[J]. IEEE Trans on Power Systems, 2005, 20(2): 1089-1094.
  • 6Eghbal M, Yorino N, El-Araby E E, et al. Multi-load level reactive power planning considering slow and fast var devices by means of particle swarm optimization[J]. lET Generation, Transmission & Distribution, 2008, 2(5): 743-751.
  • 7Zou K, Agalgaonkar A P, Muttaqi K M, et al. Distribution system planning with incorporating DG reactive capability and system uncertainties[J]. IEEE Trans on Sustainable Energy, 2012, 3(1): 112-123.
  • 8Liu Z P, Wen F S, Ledwich G. Optimal siting and sizing of distributed generators in distribution systems considering uncertainties[J]. IEEE Trans on Power Delivery, 2011, 26(4): 2541-2551.
  • 9Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 10Yu H, Chung C Y, Wong K P, et al. Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition[J]. IEEE Trans on Power Systems, 2009, 24(2): 661-667.

引证文献6

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部