期刊文献+

带连通性约束的快速交互式Graph-Cut算法 被引量:8

Connectivity Constrained Graph-Cut for Fast Interactive Image Segmentation
下载PDF
导出
摘要 Graph-Cut算法是图像及视频中经典且有效的前景和背景分离算法,针对其计算量较大导致实时性不佳、前景和背景颜色相似时分割结果易出现shrinking bias现象的问题,提出一种改进算法.该算法利用Mean-Shift技术对图像进行预处理,将原图像表示成基于区域的、而不是基于像素的图结构,预处理结果还可应用于后续的前景和背景颜色分布估计过程,使得计算量大大下降;在能量函数中引入了具有自适应权值调节功能的连通性约束项,有效地改善了shrinking bias现象,提高了分割结果的精确性.实验结果表明,文中算法具有良好的实时交互性,且分割效果更加稳定和精确. Graph-Cut segmentation algorithm is known to be a classical and effective method for extracting foreground objects from images or videos. However, the algorithm does not usually lend itself to real time applications due to its high computational complexity. Moreover, it tends to produce so called shrinking bias phenomena when foreground and background have similar color distributions. In this paper, an improved algorithm is proposed to deal with these problems. There are two points behind our algorithm. First, a Mean-Shift technology based pre-segmentation is used so that the Graph-Cut algorithm is performed on the pre-segmented regions rather than on image pixels, thus dramatically reducing the computational overhead of the algorithm. In addition, the pre segmentation result can also be used in the subsequent estimation of the foreground and background color distributions. Second, and more importantly, a connectivity constraint with adaptive weight adjustment functionality is added as a new term to the energy function to be minimized. In this way, the shrinking bias phenomenon is remarkably mitigated and the segmentation accuracy is enhanced. Experimental results on a set of images have shown that our algorithm has good real time interactivity with stable and accurate segmentation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第3期399-405,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60805042) 福建省自然科学基金(2010J01329)
关键词 Graph—Cut 交互式图像分割 连通性 实时交互性 Graph-Cut interactive image segmentation connectivity real-time interactive
  • 相关文献

参考文献18

  • 1Kass M,Witkin A,Terzolpoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 2Boykov Y Y,Jolly M P.Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2001,1:105-112.
  • 3Boykov Y R,Funka-Lea G.Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision,2006,70(2):109-131.
  • 4Rother C,Kolmogorov V,Blake A.Grabcut-interactive foreground extraction using iterated graph cuts[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2004:309-314.
  • 5Li Y,Sun J,Tang C K,et al.Lazy snapping[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2004:303-308.
  • 6Mortensen E N,Reese L J,Barrett W A.Intelligent selection tools[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2000,2:776-777.
  • 7Mortensen E N,Barrett W A.Interactive segmentation with intelligent scissors[J].Graphical Models in Image Processing,1998,60(5):349-384.
  • 8Vicente S,Kolmogorov V,Rother C.Graph cut based image segmentation with connectivity priors[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2008:1-8.
  • 9Freedman D,Zhang T.Interactive graph cut based segmentation with shape priors[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2005,1:755-762.
  • 10Veksler O.Star shape prior for Graph-Cut image segmentation[M]//Lecture Notes in Computer Science.Heidelberg:Springer,2008,5304:454-467.

二级参考文献17

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4):321-331.
  • 2Adobe Systems Incorporation. Using Adobe Photoshop cs4 [OL]. [2009-03-09]. http://help. adobe. com/en_US/ Photoshop/11.0/index. html.
  • 3Vezhnevets V, Konouchine V. "Growcut "-interactive multi-label N D image segmentation by cellular automata [OL]. [2009-03-09]. http://www. graphicon. ru/2005/ proceedings/papers/VezhntvetsKonushin. pdf.
  • 4Grady L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 31768-1783.
  • 5Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N D images [C]//Proceedings of International Conference on Computer Vision, Vancouver, 2001, 1:105-112.
  • 6Rother C, Kolmogorov V, Blake A. "Grabcut"-interactive foreground extraction using iterated graph cuts [J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
  • 7Li Y, Sun J, Tang C K, et al. Lazy Snapping [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2004: 303-308.
  • 8Boykov Y, Kolmogorov V. An experimental comparison of rain cut/max-flow algorithms for energy minimization in vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
  • 9Kohli P, Torr P H S. Dynamic graph cuts for efficient inference in Markov random fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (12): 2079-2088.
  • 10Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts? [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (2): 147-159.

共引文献10

同被引文献192

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Pal N R, Pal S K. A review on image segmentation tech- niques. Pattern Recognition, 1993, 26(9): 1277-1294.
  • 5Veksler O. Efficient Graph-based Energy Minimization Methods in Computer Vision [Ph.D. dissertation], Cornell University, USA, 1999.
  • 6Bhandarkar S M, Zhang H. A comparison of stochastic op- timization techniques for image segmentation. International Journal o? Intelligent Systems, 2000, 15(5): 441-476.
  • 7Wang J S, Swendsen R H. Cluster Monte Carlo algorithms. Physica A: Statistical Mechanics and Its Applications, 1990, 167(3): 565--578.
  • 8Tu Z W, Zhu S C. Image segmentation by data-driven Markov chain Conte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673.
  • 9Barbu A, Zhu S C. Generalizing Swendsen-Wang to sam- pling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1239-1253.
  • 10MarteUi A, An application of heuristic search methods to edge and contour detection. Communications of the ACM, 1976, 19(2): 73-83.

引证文献8

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部