期刊文献+

压力导致SrZrO_3和ZnCr_2O_4结构相变第一性原理模拟研究(英文) 被引量:1

First-principle calculation predicting pressure-induced phase transitions in SrZrO_3 and ZnCr_2O_4
原文传递
导出
摘要 采用第一性原理基于密度泛函平面波赝势方法来详细研究了SrZrO_3和ZnCr_2O_4的结构,力学和电子性质.分别通过分析压力下SrZrO_3的能带宽度和弹性模量,我们预测SrZrO_3分别在30 GPa和20~25 GPa下发生相变.通过分析压力下ZnCr_2O_4的弹性常数,我们预测ZnCr_2O_4在25 GPa时发生相变. The first-principle density functional theory (DFT) with the plane wave along with pseudopotential is employed to investigate the structural, mechanical and electronic properties of SrZrO3 and ZnCr2O4. Our calculated results are in good agreement with the experimental data and other theoretical studies. We predict that there is a phase transition in SrZrOa at 30 GPa from the analysis of the bandgap versus pressure, whereas the phase transition occurs between 20 and 25 GPa from the discussion of the bulk modulus dependence on pressure. From the analysis of elastic constants under high pressure, we infer that there is a phase transition in ZnCr2O4 at 25 GPa.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期142-146,共5页 Journal of Sichuan University(Natural Science Edition)
基金 绿色化学合成技术国家重点实验室培育基地开放研究基金(GCTKF201017)
关键词 SrZrO3 ZnCr2O4 高压 第一性原理 SrZrO3, ZnCr2O4, high pressure, first-principles
  • 相关文献

参考文献19

  • 1Wang Z,Lazor P.Saxena S K,Artioli G.Highpressure Raman spectroscopic study of spinel(ZnCrzO4)[J].J Sol State Chem,2002,165(1):165.
  • 2Fan D,Zhou W,Liu C,et al.Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K[J].J Mater Sci,2008,43(16):5546.
  • 3Levy D,Diella V,Pavese A,et al.P-V equation of state,thermal expansion,and P-T stability of synthetic zincochromite(ZnCr2O4 spinel)[J].Am Mineral,2005,90(7):1157.
  • 4Catti M,Freyria F F,Zicovich C,Dovesi R.Highpressure decomposition of MCr2O4 spinels(M=Mg,Mn,Zn)by ab initio methods[J].Phys Chem Miner,1999,26(5):389.
  • 5Payne M C,Teter M P,Allen D C,et al.Iterative minimization techniques for ab initio total-energy of calculations:molecular dynamics and conjugate gradients[J].Rev Mod Phys,1992,64(4):1045.
  • 6Milman V,Winkler B,White J A,et al.Electronic structure,properties,and phase stability of inorganic crystals:a pseudopotential plane-wave study[J].Int J Quant Chem,2000,77(5):895.
  • 7Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Phys Rev B,1990,41(11):7892.
  • 8Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18):3865.
  • 9Pfrommer B G,C(o)tèM,Louie S G,Cohen M L.Relaxation of crystals with the quasi-Newton method[J].J Comput Phys,1977,131(1):233.
  • 10Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations[J].Phys Rev B,1976,13(12):5188.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部