摘要
探讨模糊系统的函数逼近能力是模糊系统理论研究的一个重要的课题.本文首次讨论了在两种推理规则情形下由三Ⅰ支持度算法和模糊熵三Ⅰ算法设计的模糊系统的响应能力.针对三Ⅰ支持度算法,分别就正则蕴涵算子和11个具体的模糊蕴涵算子,考察了相应模糊系统的响应能力,讨论了基于模糊熵三Ⅰ算法和三Ⅰ算法设计的模糊系统的响应函数之间的关系.此外,在多规则情形下,研究了推理过程中推理与聚合的先后次序对控制性能的影响.
The function approximate abilities of fuzzy systems are important topics in the theory of fuzzy systems. In the present paper, we study response abilities of fuzzy systems designed by using the triple I sustaining degree method and the fuzzy entropy triple I method under two different reasoning rules. For the regular implication operators and eleven implication operators, we discuss the response abilities of fuzzy systems designed by using triple I sustaining degree method. We also investigate the relationship between different response functions based on the above two inference methods. Moreover, under the condition of multi-rules, we study the effect of the order of interchange between the inference and the aggregation on the control performance of fuzzy systems.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2011年第1期24-30,共7页
Control Theory & Applications
基金
国家自然科学基金资助项目(10871229,60673117)
上海市重点学科基金资助项目(B412)
中央高校基本科研业务费专项基金资助项目(78210045)
关键词
模糊推理
模糊系统
三I算法
蕴涵算子族
响应函数
fuzzy reasoning
fuzzy system
triple I method
parametric operators
response function