期刊文献+

B2C环境下带预约时间的车辆路径问题及多目标优化蚁群算法 被引量:17

Vehicle routing problem with time reservation under B2C electronic commerce and ant colony algorithm for multi-objective optimization
下载PDF
导出
摘要 根据B2C(商家对客户)电子商务环境下物流配送的特点建立了带预约时间的车辆路径问题(VRP)数学模型,设计了求解多目标优化的蚁群算法,各个目标具有相同的重要性.在蚁群的状态转移概率中引入预约时间窗宽度及车辆等待时间因素,记录优化过程中产生的Pareto最优解,用Pareto最优解集来指导蚁群的信息素更新策略.采用改造的Solomon数据进行仿真实验,用Solomon最优解与本文的结果进行比较,实验结果验证了模型的合理性及算法的有效性. According to characteristics of logistics distribution in B2C(business to customer) electronic commerce, a mathematical model about vehicle routing problem(VRP) with time reservation is developed. An ant colony algorithm for solving multi-objective optimization is designed. Each objective has the same importance. The algorithm introduces factors of booking time window width and vehicle waiting time into state transfer rules, and records Pareto optimal solution generated in the optimal process. Pareto optimal set is employed to guide the pheromone-updating tactics. Improved Solomon data are adopted in emulation experiments. Solomon optimal solution is compared with the result of emulation experiments. Experiment results show the rationality of the proposed model and the effectiveness of the algorithm.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第1期87-93,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(70771020 70721001) 国家"863"计划/先进制造技术领域专题项目(2007AA04Z194) 教育部新世纪优秀人才支持计划(NCET-06-0286)
关键词 B2C电子商务 车辆路径问题 多目标优化 PARETO最优解 时间窗 蚁群算法 B2C electronic commerce vehicle routing problem multi-objective optimization Pareto optimal solution time windows ant colony algorithm
  • 相关文献

参考文献12

  • 1STEPHEN H.A comparison of B2C E-Commerce in developing countries[J].Electronic Commerce Research,2004,4(3):181-199.
  • 2TIMON C D,ELDON Y L,DEFROSE C.Dynamic vehicle routing for online B2C delivery[J].Omega,2005,33(1):33-45.
  • 3PATRICIA L M.A conceptual analysis of the transportation impacts of B2C e-commerce[J].Transportation,2004,31(3):257-284.
  • 4THIERRY M.EDITH N.Arcs-states models for the vehicle routing problem with time windows and related problems[J].Computers & Operations Research,2007,34(4):1061-1084.
  • 5马华伟,杨善林.可选时间窗车辆调度问题的改进禁忌搜索算法[J].系统仿真学报,2008,20(16):4454-4457. 被引量:14
  • 6DAVID M,OLLI B.Active guided evolution strategies for large-scale vehicle routing problems with time windows[J].Computers & Operations Research,2005,32(6):1593-1614.
  • 7DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperative agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41.
  • 8MULLEN R J,MONEKOSSO D,BARMAN S,et al.A review of ant algorithms[J].Expert Systems with Applications,2009,36(6):9608-9617.
  • 9DOERNER K E GUTJAHR W J,HARTL R E et al.Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection[J].European Journal of Operational Research,2006,171(3):830-841.
  • 10CHAHARSOOGHI S K,AMIR H M K.An effective ant colony optimization algorithm(ACO)for multi-objective resource allocation problem(MORAP)[J].Applied Mathemutics and Computation,2008,200(1):167-177.

二级参考文献25

共引文献28

同被引文献156

引证文献17

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部