期刊文献+

矩阵的加M权右对称因子

Matrix M-weighted right symmetry factor
原文传递
导出
摘要 研究一般矩阵A的加M权(加N权)对称因子,并讨论A的加M权右对称因子的结构,由此诱导出A的一个具有给定值域T和零空间S的{2,3M}逆AT(2,S,3 M)的表示。 Some definitions about matrix M-weighted (N-weighted) symmetry factors are introduced, and the construction of matrix M-weighted right symmetry factor is discussed in detail. The explicit expression of the generalized inverse AT,S^(2,3M) which is a { 2,3 M} inverse of A having the prescribed rang T and null space S, is derived.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第2期114-116,共3页 Journal of Shandong University(Natural Science)
基金 教育部科学技术研究重点资助项目(210164)
关键词 对称因子 广义逆 奇异值分解 symmetry factor generalized inverse singular-value decomposition
  • 相关文献

参考文献8

  • 1BEN-ISRAEL A, GREVILLE T N E. Generalized inverse: theory and applications[M]. New York: Springer, 2003.
  • 2NASHED M Z, CHEN X. Convergence of Newton-like methods for singular operator equations using outer Inverses[J]. Numer Math, 1993, 66:235-257.
  • 3GETSON A J, HSUAN F C. [2 ]-Inverses and their statistical applications [ M]// Lecture Notes in Statistics 47. Berlin: Springer, 1988.
  • 4HUSEN F, LANGENBERG P, GETSON A. The [2]-inverse with applications to satistics[J]. Linear Algebra Appl, 1985, 70:241-248.
  • 5MITRA S K, HARTWIG R E. Partial orders based on outer inverse[J]. Linear Algebra Appl, 1992, 176:3-20.
  • 6RAO C R, MITRA S K. Generalized inverse of matrices and its applications[ M]. New York: Wiley, 1971.
  • 7YANG H, LILT D, XU J. Matrix left symmetry factor and its applications in generalized inverse AT,S^(2,4) [ J]. Appl Math Comput, 2007, 197:836-843.
  • 8WANG G, WEI Y, QIAO S. Generalized inverse: theory and computations [ M ]. Beijing/New York: Science Press, 2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部