期刊文献+

基于改进的支持向量聚类的雷达信号分选 被引量:2

Radar signal sorting based on the improvement of support vector clustering
下载PDF
导出
摘要 基于支持向量聚类,提出一种新的针对未知雷达辐射源信号分选的算法。该方法在原有支持向量的基础上,在聚类标识阶段通过用支持向量点代替原来的全部样本点来进行聚类分配,减少了关联矩阵的规模,从而有效节省了聚类分配的时间,提高了运行速度。同时结合合并同类聚类中心算法有效缓解了核函数的参数q对聚类结果的影响,使得聚类精度有了一定的提高。对未知雷达辐射源信号进行聚类分析的数值实验结果表明,该改进支持向量(SVC)算法不仅显著改善了SVC算法的时间性能,而且具有较高的识别率。 Based on support vector clustering,a new algorithm for unknown radar signal for unknown sor- ting is introduced. The method improves the traditional support vector clustering algorithm during the cluster assignment phase ,using support vector instead of all samples of data sets to reduce the incidence matrix of the scale,which effective to shorten the operational time and raise the operational speed. At the same time, the cen- tres merged together algorithm is used to relieve nuclear function parameters q to affect the outcome, which make clustering precision has become much. The unknown radar signal clustering of the experiment results show that the improvement of clustering algorithm not only improves the performance but also has a higher rate of identification.
作者 向娴 汤建龙
出处 《航天电子对抗》 2011年第1期50-53,共4页 Aerospace Electronic Warfare
关键词 雷达信号分选 支持向量聚类 radar signal sorting~ support vector clustering
  • 相关文献

参考文献6

二级参考文献28

共引文献77

同被引文献15

  • 1ZHANG T, RAMAKRISHMAN R, LIVNY M. BIRCH: An Efficient Data Clustering Method for very Large Databases [C]. In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data. Canada, 1996,1 032-1 141.
  • 2KARYPIS G, HAN E H, KUMAR V. CHAMELEMON: Ahierarchical Clustering Algorithm Using Dynamic Modeling [ J ]. COMPUTR, 1999 ( 32 ) :682 - 751.
  • 3GUHA S, RASTOGI R, SHIM K. CURE: an Efficient Clustering Algorithm for Large Database [ J]. Information Systems ,2001,26(1 ) :35 -58.
  • 4Guo Q, Li Z, Zhang X. Suppoit Vector Clustering and Type-entropy Based Joint De-interleaving/recognition Sys-tern of Radar Pulse Sequence [ M ]. Intelligent Control and Automation. Springer Berlin Heidelberg, 2006.
  • 5Hun A B, David H, Hava T.Siegelmann, Vladimir Vapnik , Support Vector Clustering [ J ]. Journal of Machine Learning Research, 2001,12(2) : 125-137.
  • 6Wu S T,Tommy W S, Clustering of the Self-organizing Map Using a Clustering Validity Index Based on Inter-cluster and Intra-cluster Density [ J ].Pattern Recognition, 2004,37 ( 2 ) : 175-188.
  • 7Lee S, Daniels K. Gaussian Kernel Width Generator for Support Vector Clustering [ C ]//International Conference on Bioinformatics and its Applications, 2004.
  • 8时念云,张金明,褚希.基于CURE算法的相似重复记录检测[J].计算机工程,2009,35(5):56-58. 被引量:11
  • 9张愚,翁小雄.CURE聚类方法及其在交通信息服务系统中的应用[J].科学技术与工程,2009,9(10):2611-2615. 被引量:2
  • 10周亚建,徐晨,李继国.基于改进CURE聚类算法的无监督异常检测方法[J].通信学报,2010,31(7):18-23. 被引量:22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部