期刊文献+

一种改进的新颖的粒子群优化算法 被引量:1

Improved novel Particle Swarm Optimization algorithm
下载PDF
导出
摘要 针对PSO在寻优过程容易出现"早熟"现象,提出了一种基于Sobol序列的自适应变异PSO算法(SAPSO)。该算法以积分控制粒子群算法(ICPSO)为基础,使用准随机Sobol序列初始化种群个体,并在算法过程中引入基于多样性反馈的Beta分布自适应变异来保持种群的多样性,避免陷入局部最优。仿真结果表明,SAPSO算法在求解复杂优化问题时优势明显,可以有效地避免算法陷入局部最优,在保证收敛速度的同时增强了算法的全局搜索能力。 To solve the premature problem of PSO, an improved PSO algorithm with adaptive mutation based on Sobol sequence(SAPSO) is proposed.Based on ICPSO,quasi-random Sobol sequence is introduced to the initialization of the swarm and the adaptive mutation with Beta distribution based on diversity feedback is used to keep the diversity of the population and to avoid the local optimum.The results show the effectiveness of SAPSO solving complicated optimization problems and avoiding the local optimum.The global searching ability is enhanced as well as the convergent speed is guaranteed.
作者 顾大为 凌君
出处 《计算机工程与应用》 CSCD 北大核心 2011年第6期49-51,85,共4页 Computer Engineering and Applications
关键词 粒子群优化算法 Sobol序列 BETA分布 自适应变异 多样性反馈 Particle Swarm Optimization(PSO) Sobol sequence Beta distribution adaptive mutation diversity feedback
  • 相关文献

参考文献3

二级参考文献28

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2GREFENTSETTE J J. Optimization of control parametersfor genetic algorithms [ J ]. IEEE Trans Sys Man, and Cyber, 1986, 16( 1 ) : 122 - 128.
  • 3QI Xiaofeng, Francesco Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space, part I: Basic properties of selection and mutation[ J ]. IEEE Trans Neural Networks, 1994, 5(1): 102-119.
  • 4QI Xiaofeng, Francesco Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space, part II : Analysis of the diversification role of crossover [ J ]. IEEE Trans Neural Networks, 1994,5( 1 ) :120 - 129.
  • 5SRINIVAS M. Adaptive probability of crossover and mutation in genetic algorithms [ J ]. IEEE Trans Syst Man Cybern, 1994, 24(4): 655-667.
  • 6CAO Y J, WU Q H. Convergence analysis of adaptive genetic algotithms[ C]//Genetic Algorithms in engineering Systems : Innovations and Applications. [ S. 1. ] : IEE, 1997.
  • 7周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.161-166.
  • 8Kennedy J,Eberhart R.Particle swarm optimization[A].In:IEEE International Conference on Neural Networks[C].Perth,Australia:1995,1942-1948.
  • 9Eberhart R,Kennedy J.A new optimizer using particle swarm theory[A].In:The Sixth International Symposium on Micro Machine and Human Science[C].Nagoya,Japan:1995.39-43.
  • 10Wachowiak M P,Smolikova R,Zheng Y F,et al.An approach to multimodal biomedical image registration utilizing particle swarm optimization[J].IEEE Trans.on Evolutionary Computation,2004,8(3):289-301.

共引文献13

同被引文献8

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部