期刊文献+

基于EST和SVM的乳腺癌识别新方法 被引量:2

New method of breast cancer diagnosis based on EST and SVM
下载PDF
导出
摘要 在分析了目前肿瘤分类检测所采用的方法基础上,提出了一种基于特征空间分离变换(Eigenspace Separation Trans-form)结合支持向量机的乳癌识别新方法。用UCI数据库提供的569例乳腺肿瘤患者,乳腺肿块细胞核显微图像的30个量化特征样本集,进行了分类识别实验,结果表明采用新方法检测乳癌正确识别率达98.3%,优于传统的其他分类识别方法。 This paper introduces the techniques and methods in breast tumor classification,presents a new method of breast cancer diagnosis based on eigenspace separation transform and support vetor machine.Classification experiments are conducted using sample set provided by UCI database with 569 cases of breast tumor cell each with 30 features.The results indicate that the accurate recognition rate of breast cancer is 98.3%.The new method is obviously superior to conventional methods.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第8期183-185,193,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60572034 No.90820002) 教育部新世纪优秀人才计划(No.NCET-06-0487) 江苏省自然科学基金(No.BK2006081) 江南大学创新团队计划项目(No.JNIRT0702) 淮安市科技支撑计划(No.HAS2010042)~~
关键词 主成分分析 特征空间分离变换 支持向量机 肿瘤分类 principal componnet analysis eigenspace separation transform support vector machine tumor classification
  • 相关文献

参考文献14

  • 1Chiou Y S P,Lure Y M F,Ligomenides P A.Neural network im- age analysis and classification in Hybrid Lung Nodule Detection (HLND) system[C]//Proceedings of the 1993 IEEE-SP Work- shop on Neural Net-works for Signal Processing.NY: IEEE, 1993 : 517-526.
  • 2Hayashibe R,Asano N,Hirohata H,et aLAn automatic lung can- cer detection from X-ray images obtained through yearly serial mass survey[C]//Proceedings of the International Conference on Image Processing.NY: IEEE, 1996,1 : 343-346.
  • 3Moil K, Hasegawa J, Toriwaki J, et al.Recognition of bronchus in three dimensional X-ray CT images with applications to vir- tualized bronchoscopy system[C]//Proceedings of the 13th Inter- national Conference on Pattern Recognition.NY: IEEE, 1996, 3: 528-532.
  • 4姜远,周志华,谢琪,陈兆乾.神经网络集成在肺癌细胞识别中的应用[J].南京大学学报(自然科学版),2001,37(5):529-534. 被引量:19
  • 5刘琼荪,何离庆.基于人工神经网络的乳腺癌诊断模型[J].重庆大学学报(自然科学版),2003,26(4):70-72. 被引量:14
  • 6Furey T S,Cristianini N,Duffy N,et al.Support vector machine classification and validation of cancer tissue samples using mi- croarray expression data[J].Bioinformatics, 2000,16 (10) : 906-914.
  • 7Guyon I, Weston J, Barahill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learn- ing, 2002,46: 389-422.
  • 8Cho Sung-Bae, Won Hong-Hee.Machine leaming in DNA micro- array analysis for cancer classificafion[C]//Proc of the 1st Asia-Pacific Bioinformatics Conf on Bioinformatics,2003 : 189-198.
  • 9王树林,王戟,陈火旺,张波云.基于主成份分析的肿瘤分类检测算法研究[J].计算机工程与科学,2007,29(9):84-90. 被引量:9
  • 10Duda R, Hart RPattem classification and scene analysis[M]. New York: Wiley, 1973.

二级参考文献32

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 3靳蕃.神经网络计算基础——原理和方法[M].成都:西南交通大学出版社,2000.156-158.
  • 4Kira K,Rendell L A.The Feature Selection Problem:Traditional Methods and a New Algorithm[A].Proc of the 10th National Conf on Artificial Intelligence[C].1992.129-134.
  • 5Zhang Xue Wu,Yap Yee Leng,Wei Dong,et al.Molecular Diagnosis of Human Cancer Type by Gene Expression Profiles and Independent Component Analysis[J].European Journal of Human Genetics,2005,5(9):1018-4813.
  • 6Eisen M T,Spellman P O,Botstein D,et al.Cluster Analysis and Display of Genome-Wide Expression Patterns[J].Proceeding of National Academy of Sciences,1998,95:14863-14868.
  • 7Vapnik V N.Statistical Learning Theory[M].New York:Springer,1998.
  • 8Furey T S,Cristianini N,Duffy N,et al.Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data[J].Bioinformatics,2000,16(10):906-914.
  • 9Guyon I,Weston J,Barnhill S,et al.Gene Selection for Cancer Classification Using Support Vector Machines[J].Machine Learning,2002,46 (1-3):389-422.
  • 10Cho Sung-Bae,Won Hong-Hee.Machine Learning in DNA Microarray Analysis for Cancer Classification[A].Proc of the 1st Asia-Pacific Bioinformatics Conf on Bioinformatics[C].2003.189-198.

共引文献2313

同被引文献15

  • 1孙海燕,黄品同,黄福光,田新桥,杨琰,吕夕明.超声造影评价颈动脉粥样硬化斑块的初步研究[J].中华超声影像学杂志,2007,16(3):219-221. 被引量:41
  • 2Alagugowri. S,Dr. T. Christopher. Enhanced heart disease analysis and prediction system using data miningE]3. In- ternational Journal of Emerging Trends in Science and Technology,2014,1(9) ;1 555 I 556.
  • 3Kenneth R, Robert K, Joseph. Machine learning, medical diagnosis, and biomedical engineering research-commen- tary[J]. Biomedical Engineering OnLine, 2014,13 ( 1 ) : 94- I03.
  • 4Katja Hansen, Grgoire Montavon, Franziska Biegler,et al. Assessment and validation of machine learning meth- ods for predicting molecular atomization energies[J]. The- ory Comput,2013,9(8):3 404-3 419.
  • 5Smaranda B,Florin G. Error-correction learning for artifi- cial neural networks using the bayesian paradigm applica- tion to automated medical diagnosis[J]. Journal of Bio- medical Informatics, 2014,52 : 329 337 .
  • 6Jose M,Pablo E,Carlo B,et al. Prediction of the hemoglo-bin levee in hemodialysis patients using machine [earning techniques[J]. Computer Methods and Programs in Bio- medicine, 2014,117(2) : 208-217.
  • 7Ya Wen Hsiao, Urban Fagerholm,Ulf Norinder. In silico categorization of in vivo intrinsic clearance using machine learning[J]. Pharmaceutics,2013,10(4):1 318-1 321.
  • 8丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:919
  • 9顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17. 被引量:123
  • 10白志勇,李敬府,杨玉杰,张华斌,刘蕾,李小刚,贾建文.颈动脉粥样硬化斑块超声造影特征分析[J].中国超声医学杂志,2011,27(11):994-996. 被引量:22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部