期刊文献+

一种模糊相似关系的基因表达数据聚类方法 被引量:2

Improved clustering algorithm based on fuzzy similarity relation
下载PDF
导出
摘要 对于时间序列的基因表达数据,传统的聚类算法都是以距离为相似性度量标准,没有考虑基因随时间变化的相似趋势。从基因变化的趋势出发,构造了一种新的模糊相似关系矩阵,提出了改进的基于模糊相似关系的聚类算法,并以该算法计算FCM的初始聚类中心。将该方法应用在酵母菌基因表达数据中,实验结果表明该算法不仅克服了FCM算法易陷入局部极小值、对初值敏感的缺点,而且能够发现一些表达模式变化趋势相似的共调控基因。 For time series gene expression data,the similarity measure of traditional clustering algorithm is measured based on distance.There is no consideration the coherent trend of expression patterns gene exhibit with time process.A new fuzzy similar relation matrix is constructed and a modified clustering algorithm based on fuzzy similarity relation is proposed.On this base,a new method is used to find the initial center of FCM algorithm.The method is used in yeast gene expression data.Experimental results show that the method not only overcomes the limitation of FCM algorithm,but also identifies cell-cycle regulated genes where expression levels change periodically during the cell cycle.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第8期236-238,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60674029)~~
关键词 模糊相似关系矩阵 聚类中心 模糊C均值聚类(FCM)算法 时序基因表达数据 fuzzy similar relation matrix cluster centers Fuzzy C-Means(FCM) algorithm time series gene expression data
  • 相关文献

参考文献8

  • 1Zhao Y H,Wang G,Yin Y,et al.Mining positive and negative coregulation patem from microarray data[C]//Sixth IEEE Symposium on BionInformatics and BioEngineering(BIBE'06),2006:l-8.
  • 2Tsai Guei-Feng, Qu A.Testing the significance of cell-cycle pat- terns in time-course microarray data using nonparametric qua- dratic inference functions[J].Computational Statistics & Data Analysis, 2008,52: 1387-1398.
  • 3Balasubramaniyan R, Hullermeier E,Weskamp N,et al.Clustering of gene expression data using a local shape-based similarity measure[J].Bioinformatics, 2005,21 : 1069-1077.
  • 4牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报,2007,30(2):6-10. 被引量:16
  • 5Mitra P,Murthy C A,Pal S K.Unsupervised feature selection us- ing feature similarity[J].IEEE Trails Pattern Analysis and Machine Intelligence,2002,24(3) :301-312.
  • 6Son Y S,Back J S.A modified correlation coefficient based similarity measure for clustering time-course gene expression data[J]. Pattern Recognition Letters,2008,29:232-242.
  • 7孙亮,赵芳,王永吉.DENGENE:一种高精度的基于密度的适用于基因表达数据的聚类算法[J].计算机应用研究,2007,24(4):58-61. 被引量:1
  • 8曹晖,席斌,米红.一种新聚类算法在基因表达数据分析中的应用[J].计算机工程与应用,2007,43(18):234-238. 被引量:5

二级参考文献31

  • 1胡永钢,须文波.数据挖掘在生物信息学中的应用[J].生物信息学,2004,2(3):40-42. 被引量:9
  • 2王长本,刘兴晖,王伟灵,周新.基因表达数据的聚类分析[J].国外医学(临床生物化学与检验学分册),2004,25(4):359-362. 被引量:3
  • 3闻新 周露.MATLAB神经网络应用设计[M].北京:科学出版社,2001..
  • 4Han J W,Kamber M.Data mining concepts and techniques[M].Singapore:Elesvier Inc,2006:402-404.
  • 5Ye Yunming,Huang Zhexue,Chen Xiaojun,et al.Neighborhood density method for selecting initial cluster centers in K-means clustering[C]∥Proceedings of PAKDD '06:Advances in Knowledge Discovery and Data Mining,10th Pacific-Asia Conference.Singapore:Springer,2006:189-198.
  • 6He Ji,Lan M,Tan C L,et al.Initialization of cluster refinement algorithms:a review and comparative study[C]∥Proceedings of International Joint Conference on Neural Networks.Budapest:[s.n.],2004:297-302.
  • 7Kaufman L.Finding groups in data:an introduction to cluster analysis[M].New York:Wiley,1990:64-75.
  • 8Katsavounidis I,Kuo C,Zhang Zhen.A new initialization technique for generalized lloyd iteration[J].IEEE Signal Processing Letters,1994,1(10):144-146.
  • 9He Ji.He Ji's Weblog[EB/OL].[2006-04-25].http:∥www.jihe.net/research/ijcnn04.
  • 10JIANG Daxin, TANG Chun, ZHANG Aidong. Cluster analysis for gene expression: a survey [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2004,16( 11 ) : 1370-1386.

共引文献19

同被引文献32

  • 1李刚成,刘赞波,曾庆光.一种基于模糊聚类的构造进化树方法[J].计算机应用,2009,29(3):836-838. 被引量:6
  • 2Zhou Zhun, Yang Bing- ru, Hou Wei. Association classification algorithm based on structure sequence in protein secondary structure prediction[ J]. Expert Systems with Applications, 2010,37 (9) : 6381 - 6389.
  • 3Sadowski MI, Jones DT. The sequence - structure relationship and protein function prediction [ J]. Current Opinion in Structural Biology, 2009, 19(3) : 357 -362.
  • 4Hwang I T, Lim H K, Song H Y. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001 [J]. Biotechnology Advances, 2010,28(5): 594 - 601.
  • 5Joshi C, Khare S K. Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium ther- mophilum [ J]. Bio - resource Technology, 2011,102 ( 2 ) : 1722 - 1726.
  • 6Cai Wei - ling, Chen Song - can, Zhang Dao - qiang. A simulta- neous learning framework for clustering and classification [ J ]. Pattern Recognition, 2009, 42 (7) : 1248 - 1259.
  • 7Garmendia L, Recasens J. How to make T - Transitive a proximi- ty relation [ J]. IEEE Transactions on Fuzzy Systems, 2009,17 (1): 200-207.
  • 8Meyer HD, Naessens H, Baets BD. Algorithms for computing the rain - transitive closure and associated partition tree of a symmetric fuzzy relation [ J ]. European Journal of Operational Research, 2004, 155(1 ) : 226 -238.
  • 9唐旭清,方雪松,朱平.基于模糊邻近关系的结构聚类[J].系统工程与理论实践,2010,30(11):1986-19976.
  • 10Kim DW, Lee KH, Lee D. On Cluster Validity Index for Estima- tion of Optimal Number of Fuzzy Clusters [ J]. Pattem Recogni- tion, 2004, 37(10):2009-2025.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部