期刊文献+

基于随机模糊贝叶斯网络的敌我属性融合识别算法 被引量:13

Friend-or-foe fusion identification algorithm based on Bayesian network using random fuzzy theory
原文传递
导出
摘要 基于全过程综合敌我识别中不同阶段综合敌我识别信息来源的差异,采用动态贝叶斯网络进行建模.在建模过程中,由于参数众多、样本难以全面获得、学习训练计算量巨大等问题,将随机模糊思想引入参数学习,从而既可充分利用先验信息,又尽可能地消除主观因素.最后仿真了整个过程,其结果验证了所提出方法的有效性. Based on the difference of information source during different identification phases, dynamic Bayesian network is used to model the whole process of integrated identification friend-or-foe. Due to the increasing number of model parameters, the acquiring of multitudinous swatch and the learning and training process become difficult. Therefore, the random fuzzy theory is adopted for parameter learning, which not only makes sufficient use of transcendent information, but also avoids the subjective factor as utmost as possible. The simulation results show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2011年第3期443-447,共5页 Control and Decision
关键词 融合识别 贝叶斯网络 随机模糊 fusion identification Bayesian network random fuzzy
  • 相关文献

参考文献8

  • 1Liggins M E, Hall D L, Linas J. Handbook of multisensor data fusion theory and practice[M]. 2nd ed, Boca Raton: Chemical Rubber Company Press, 2008: 12-15.
  • 2Krauthausen P, Hanebeck U D. Intention recognition for partial-order plans using dynamic Bayesian network[C]. 12th Int Conf on Information Fusion. Seattle, 2009: 444- 451.
  • 3Gosliga S P, Jansen I H. A Bayesian network for combat identification[Z]. Hague: TNO Physics and Electronics Laboratory, ADA428330, 2004.
  • 4Saenko K, Livescu K, Glass L. Multistream articulatory feature based models for visual speech recognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1700-1707.
  • 5Cho H C, Fadali M S, Yeo D Y. Nonlinear network induced time delay system with online dynamic Bayesian learning[C]. Int Joint Conf. Fukuoka, 2009: 4200-4205.
  • 6Lahdesmaki H, Shmulevich I. Learning the structure of dynamic Bayesian networks from time series and steady state measurements[J]. Machine Learning, 2008, 71(2/3): 185-217.
  • 7Liu Y K, Liu B. Random fuzzy programming with chance measures define by fuzzy integrals[J]. Mathematical and Computer Modeling, 2002, 36(4/5), 509-524.
  • 8Murphy K P. Dynamic Bayesian networks: Representation inference and learning[D]. Berkeley: Doctoral Dissertation of University of California, 2002: 125-128.

同被引文献102

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部