期刊文献+

多尺度核方法的自适应序列学习及应用 被引量:12

Adaptive Sequence Learning and Applications for Multi-Scale Kernel Method
原文传递
导出
摘要 多尺度核方法是当前核机器学习领域的一个热点.通常多尺度核的学习在多核处理时存在诸如多核平均组合、迭代学习时间长、经验选择合成系数等弊端.文中基于核目标度量规则,提出一种多尺度核方法的自适应序列学习算法,实现多核加权系数的自动快速求取.实验表明,该方法在回归精度、分类正确率方面比单核支持向量机方法结果更优,函数拟合与分类稳定性更强,证明该算法具有普遍适用性. Multi-scale kernel method is a hotspot of current kernel machine learning field. However, in the multiple kernel processing progress of multi-scale kernel learning methods, there are some disadvantages, such as average combination of kernels, time consumption increasing under iterative training and empirical selection of composite coefficients. Based on the kernel target alignment heuristics, an adaptive sequence learning algorithm for multi-scale kernel method is presented and the weighting coefficients of multiple kernels can be obtained automatically and rapidly. The experimental results testify that the proposed algorithm has better performance and stability in regression precision and classification accuracy than the SVM methods using different single kernels. Moreover, the proposed algorithm has good universal applicability.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第1期72-81,共10页 Pattern Recognition and Artificial Intelligence
基金 国家重点基础研究专项基金(No.G2007cb311003) 国家自然科学杰出青年基金(No.60625304 60621062)资助项目
关键词 核方法 多核学习 多尺度核 核目标度量 回归 模式分类 Kernel Method, Multiple Kernel Learning, Multi-Scale Kernel, Kernel Target Alignment,Regression, Pattern Classification
  • 相关文献

参考文献1

二级参考文献1

  • 1Christopher J.C. Burges.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery.1998(2)

共引文献3

同被引文献105

引证文献12

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部