期刊文献+

可见-近红外反射光谱用于疾病快速筛查 被引量:20

Visible-Infrared Reflectance Spectroscopy Applied in Rapid Screen of Diseases
原文传递
导出
摘要 为了探讨基于舌诊的疾病快速筛查,运用可见和近红外光谱仪,采集149名志愿者舌尖的反射光谱并且进行反射率归一化处理。根据临床诊断结果将样本分为4组:健康组、高粘血症倾向组、脂肪肝患者组和冠心病患者组。运用主成分分析(PCA)结合人工神经网络(ANN)方法、偏最小二乘(PLS)方法和间隔偏最小二乘(iPLS)方法3种方法建立分类预测模型。预测准确率分别为75%,75%和85%。实验结果表明,在3种建模方法中,iPLS预测效果最好,与可见光波段相比,近红外波段含有更多与疾病分类相关的光谱信息。实验的结果表明,光谱法用于某些疾病的快速诊断具有较高的可行性。 To screen disease which based on tongue inspection rapidly,the reflection spectrum on the tongue tips of 149 volunteers were collected by visible and near-infrared spectrometer and then the normalized reflectivity was calculated.Samples were divided into four classes according to the clinical diagnosis information: healthy,hyperviscosity,fatty liver,and coronary heart disease groups.Spectra were then subjected to three different analysis methods: principle component analysis(PCA) combined with artificial neural network(ANN),partial least squares(PLS),and interval PLS(iPLS).The classification accuracy of each model are 75%,75%,and 85%,respectively.The results show that iPLS method sees more robust than the others.And the results also show that near-infrared region including more disease information than visible region.Experimental results show that the application of the spectra for disease diagnosis is promising.
出处 《光学学报》 EI CAS CSCD 北大核心 2011年第3期183-188,共6页 Acta Optica Sinica
基金 国家自然科学基金(30973964) 天津市应用基础及其前沿技术研究计划(10JCYBJC00400)资助课题
关键词 光谱学 疾病诊断 主成分分析 人工神经网络 偏最小二乘法 间隔偏最小二乘法 spectroscopy disease diagnosis principal component analysis(PCA) artificial neural network(ANN) partial least square(PLS) interval partial least square(iPLS)
  • 相关文献

参考文献21

二级参考文献109

共引文献378

同被引文献455

引证文献20

二级引证文献278

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部