摘要
为了探讨基于舌诊的疾病快速筛查,运用可见和近红外光谱仪,采集149名志愿者舌尖的反射光谱并且进行反射率归一化处理。根据临床诊断结果将样本分为4组:健康组、高粘血症倾向组、脂肪肝患者组和冠心病患者组。运用主成分分析(PCA)结合人工神经网络(ANN)方法、偏最小二乘(PLS)方法和间隔偏最小二乘(iPLS)方法3种方法建立分类预测模型。预测准确率分别为75%,75%和85%。实验结果表明,在3种建模方法中,iPLS预测效果最好,与可见光波段相比,近红外波段含有更多与疾病分类相关的光谱信息。实验的结果表明,光谱法用于某些疾病的快速诊断具有较高的可行性。
To screen disease which based on tongue inspection rapidly,the reflection spectrum on the tongue tips of 149 volunteers were collected by visible and near-infrared spectrometer and then the normalized reflectivity was calculated.Samples were divided into four classes according to the clinical diagnosis information: healthy,hyperviscosity,fatty liver,and coronary heart disease groups.Spectra were then subjected to three different analysis methods: principle component analysis(PCA) combined with artificial neural network(ANN),partial least squares(PLS),and interval PLS(iPLS).The classification accuracy of each model are 75%,75%,and 85%,respectively.The results show that iPLS method sees more robust than the others.And the results also show that near-infrared region including more disease information than visible region.Experimental results show that the application of the spectra for disease diagnosis is promising.
出处
《光学学报》
EI
CAS
CSCD
北大核心
2011年第3期183-188,共6页
Acta Optica Sinica
基金
国家自然科学基金(30973964)
天津市应用基础及其前沿技术研究计划(10JCYBJC00400)资助课题
关键词
光谱学
疾病诊断
主成分分析
人工神经网络
偏最小二乘法
间隔偏最小二乘法
spectroscopy
disease diagnosis
principal component analysis(PCA)
artificial neural network(ANN)
partial least square(PLS)
interval partial least square(iPLS)