期刊文献+

基于G.9960协议的高阶QAM调制与解调 被引量:3

Modulation and Demodulation of High Order QAM Based on G.9960
下载PDF
导出
摘要 G.9960是国际电信联盟(ITU-T)制定的下一代家用网络标准,采用正交频分复用(OFDM)和高阶QAM调制相结合的技术,实现高速可靠的数据传输.将讨论高阶QAM调制和软解调的算法.偶数阶调制使用方形星座图,将格雷码形式排列的二进制序列,映射成复数点;奇数阶调制使用十字型星座,将格雷码形式的二进制序列映射为复数点后,再依据一定的规则加以旋转.基于Bahl等人提出的逐符号最大后验概率译码算法,推导了对数似然比计算公式;由于对数似然比计算涉及对数运算,因此利用取最大值代替指数对数运算来进行简化.仿真结果表明,在AWGN信道下,信噪比为8 dB时,使用简化的软解调算法,2048QAM-LDPC系统的误码率可达到3×10-5,4096QAM-LDPC系统的误码率可达到5×10-4.简化的软解调算法,计算量较小,误码率低,具有良好的性能. G.9960 is a standard for next-generation home networking being developed by the International Telecommunication Union′s Standardization Sector(ITU-T).The standard adopts Orthogonal Frequency Division Multiplexing(OFDM) and Quadrature Amplitude Modulation(QAM),to achieve high throughout and reliable data transmission.In this paper,we specify the algorithm of high order QAM and soft-decision decoder.Even-order modulation uses square-shape constellation map;the binary sequence is recognized as Gray code,and is mapped to complex number.Odd-order modulation uses cross-shape constellation map;the binary sequence is recognized as Gray code,firstly mapped into complex number,and then rotated according to some formulation.Based on Bahl′s maximum posterior probability decoding algorithm for incoming each symbol,logarithm likelihood ratio(LLR) algorithm is deduced.As LLR algorithm refers to logarithmic operation,maximum value is used to substitute logarithmic and exponential operation to simplify the computation.Simulation results show that,when signal noise ratio(SNR) is 8dB,the bit error ratio(BER) of 2048QAM-LDPC system can reach to 3×10-5,and the BER of 2048QAM-LDPC system can reach to 5×10-4,in AWGN channels.Simplified soft-decision demodulation algorithm has low calculation amount and BER.In hence,it is a well-behaved algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第3期89-93,共5页 Microelectronics & Computer
基金 自然科学基金项目(60802083) 西北工业大学基础研究基金项目(JC200817) 西北工业大学科技创新基金项目(2008KJ02023) 西北工业大学电子信息学院E之星基金
关键词 QAM调制 软解调 家用网络 QC-LDPC QAM soft-decision demodulation Home networking QC-LDPC
  • 相关文献

参考文献7

  • 1ITU T. G. 9960 Unified high-speed wire-line based home networking transceiver [ S]. Ceneva:.ITUT, 2009.
  • 2Yang Sun, Marjan Karkooti Joseph R. Cavallaro, high throughput, parallel, scalable LDPC encoder/Decoder Architecture for OFDM Systems[J]. Design, Applications, Integration and Software, 2006 IEEE Dallas/ CAS Workshop , 2006 , 26(2): 39-42.
  • 3Mohammad M, Mansour A. Turbo-decoding messagepassing algorithm for sparse parity-check matrix codes [J]. Signal Processing, IEEE Transactions, 2006, 16 (10) : 4376-4392.
  • 4李刚,黑勇,仇玉林.一种准循环LDPC解码器的设计与实现[J].微电子学与计算机,2008,25(7):52-55. 被引量:6
  • 5张伟,朱光喜,彭立,沈琼霞.一种高性能低复杂度LDPC码编码器设计研究[J].微电子学与计算机,2010,27(3):38-42. 被引量:1
  • 6张志 齐丙花 张平.采用高阶QAM的LDPC编码()FDM系统.无线电工程,2004,33(12):41-44.
  • 7彭立,朱光喜,张青春.基于消息传递的LDPC码硬判决解码算法建模[J].小型微型计算机系统,2004,25(6):1092-1093. 被引量:2

二级参考文献19

  • 1徐华.LDPC码相关技术研究[J].微电子学与计算机,2005,22(3):178-180. 被引量:8
  • 2窦金芳,周诠.基于矩阵分块的LDPC码快速编码结构研究[J].微电子学与计算机,2007,24(1):166-168. 被引量:3
  • 3Gallager R G. Low density parity cheek codes[D]. Cambridge, Massachusetts Institute of Technology, MA, 1962.
  • 4David J C MacKay. Good error - correcting codes based on very sparse matrices [ J ]. IEEE Tran. Info. Theory, 1999,45(2) : 399 - 431.
  • 5Fossorier M P. Quasi- cyclic low- Density parity-check codes from circulant permutation matrices[J]. IEEE Trans. Info. Theory, 2004,50(8):1788 - 1793.
  • 6Myung S, Yang K, Kim J. Quasi- cycfic LDPC codes for fast encoding[J]. IEEETrans. on Info. Theory, 2005,51 (8):2894-2901.
  • 7Miladinovic N, Fossorier M P C. Systematic recursive construction of LDPC codes[J]. IEEE Commun. Lett., 2004 (8) :302 - 304.
  • 8Gallager R G. Low-density parity-check codes[M]. Cambridge, MA: MIT Press, 1963.
  • 9MacKay D J C.Good error-correcting codes based on very sparse matrices[J].IEEE Trans.Inform.Theory,1999:45,388-431.
  • 10Sipser M and Spielman D A. Expander codes[J]. IEEE Trans. Inform.,Theory, 1996,42:1710-1722.

共引文献6

同被引文献18

  • 1于海,樊晓桠.基于FPGA异步FIFO的研究与实现[J].微电子学与计算机,2007,24(3):210-213. 被引量:49
  • 2Frank Gray. Pulse Code Communication, US2632058 [P]. 1953.
  • 3李正生,马文彦.一个人工智能问题:用格雷码±1的规律套解九连环[C]//Anon 3rd World Congress on Intelligent Control and Automation. Proceed- ings of the 3rd World Congress on Intelligent Control and Au- tomation. Hefei: IEEE, 2000 : 304-307.
  • 4王中德.沃尔什函数的构造、编序和生成[J].电子学报,1988,16(1):122-123.
  • 5Li Zhengsheng, Ma Wenyan. Weights and parity of Gray Code[C]//Conference Proceeding. Third Interna tional Conference on Electronic Measurement & Instru- ments, Beijing: CIA and Electronic Measurement and Instrument Society of CIE, 1997 :536-538.
  • 6ITU-T. Unified high-speed wire-line based home networking transceiver [ S]. G.9960, October 2009.
  • 7MCNS. Data-over-cable service interface specifications: Radio Frequency Interface Specification [ S ]. SP-RFI v2.0-105-040407, 2004.
  • 8Ki Hyuk Park, Dae Kyo Shin, et al. Design of a QPSK/ 16 QAM LMDS downstream receiver ASIC chip [ C]// Proceedings of IEEE Workshop on Signal Processing Systems. Lafayette : IEEE, 2000 : 210-217.
  • 9BAHL L, COCKE J, JELINEK F, et al. Optimal decoding of linear codes for minimizing symbol error rate [J]. IEEE Transactions on Information Theory, 1974, 20(2) : 284-287.
  • 10MOHAMMAD M. A turbo-decoding message-passing algorithm for sparse parity-check matrix codes [ J ]. IEEE Transaction on Signal Processing, 2006, 54( ! 1 ) : 4376-4392.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部