期刊文献+

低温SOFC的SDC-碳酸盐复合物电解质 被引量:2

SDC-carbonate composite electrolytes for low-temperature SOFC
下载PDF
导出
摘要 采用钐掺杂的氧化铈(SDC)-碳酸盐复合物作为低温固体氧化物燃料电池电解质。分别采用燃烧法和共沉淀法制备SDC,记为NSDC和CSDC。将这两种SDC分别与Li2CO3-Na2CO3二元共熔物复合制备了SDC-碳酸盐复合电解质材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电导率测试对两种复合电解质材料的结构、形貌和电性能进行了表征,并考察了燃料电池输出性能。结果表明,氧化物的制备方法影响复合电解质的形貌和电性能;复合大大提高了电解质的电导率,复合电解质的电导率在碳酸盐熔融点附近突然增大;NSDC-碳酸盐复合物具有更高的电导率,以H2和空气为燃料和氧化气体的电池性能测试显示,600℃时开路电压为1.02V,最大比功率为473mW/cm2。 Samarium doped ceria(SDC)-carbonate composites were developed as the electrolytes for low temperature solid oxide fuel cells.SDC powders were synthesized by combustion and co-precipitation processes,respectively,and denoted as NSDC and CSDC.The composite electrolytes consisting of SDC derived from these two methods and binary carbonates(Li2CO3-Na2CO3) were prepared.The structure,morphology and electrical property were examined by X-ray diffraction,scanning electron microscope and conductivity measurements.The results show that the morphology and electrical property are affected by the different oxide powders.The conductivity is greatly improved and sharply increased at the temperature close to the melting point of the carbonates.The composite electrolyte made of NSDC exhibits higher conductivity than the other composite.With H2 as fuel and air as oxidant,the fuel cell based on NSDC-carbonate electrolyte exhibits an open circuit voltage of 1.02 V and the maximum power density of 473 mW/cm2 at 600 ℃.
出处 《电源技术》 CAS CSCD 北大核心 2011年第2期144-147,共4页 Chinese Journal of Power Sources
基金 天津市自然科学基金项目(07jcybjc02500)
关键词 SDC 碳酸盐 复合电解质 低温固体氧化物燃料电池(LTSOFC) samarium doped ceria(SDC) carbonate composite electrolyte low temperature solid oxide fuel cell(LTSOFC)
  • 相关文献

参考文献10

  • 1毛宗强,黄建兵,王诚,刘志祥.低温固体氧化物燃料电池研究进展[J].电源技术,2008,32(2):75-79. 被引量:19
  • 2ZHU B, LIU X, ZHOU P, et al. Innovative solid carbonate ceria composite electrolyte fuel cells [J]. Electrochemistry Communica- tions, 2001, 3(10): 566-671.
  • 3BODEN A, DI J, LAFERFREN C, et al. Conductivity of SDC and (Li/Na)2CO3 composite electrolytes in reducing and oxidizing atmospheres[J].Joumal of Power Sources, 2007, 172(2):520-529.
  • 4邸婧,王成扬,陈明鸣,朱斌.低温固体氧化物燃料电池新型CeO2基复合电解质研究[J].无机材料学报,2008,23(3):573-577. 被引量:8
  • 5HUANG J, MAO Z, LIU Z, et al. Performance of fuel cells with pro- ton-conducting ceria-based composite electrolyte and nickel-based electrodes[J].Joumal of Power Sources, 2008, 175(1):238-243.
  • 6ZHANG L, LAN R, XU X, el al. A high performance intermediate temperature fuel cell based on a thick oxide-carbonate electrolyte[J]. Journal of Power Sources, 2009, 194(2):967-971.
  • 7CHUNG D Y, LEE E H. Microwave-induced combustion synthesis of Ce1_5SmxO2-v2 powder and its characterization [J].Joumal of Alloys and Compounds, 2004, 374(1/2):69-73.
  • 8FUJITSU S, MIYAYAMA M, KOUMOTO K, et al. Enhancement of ionic conduction in CaF2 and BaF2 by dispersion of Al203[J].Joumal of Materials Science, 1985, 20 (6): 2103-2109.
  • 9SCHOBER T. Composites of ceramic high-temperature proton con- ductors with inorganic compounds [J].Electrochemical Solid-State Letter, 2005, 8(4): A 199-A 200.
  • 10JI Y, LIU J, HE T, et al. Single intermedium-temperature SOFC prepared by glycine-nitrate process[J].Journal of Alloys and Com- pounds, 2003, 353(1/2):257-262.

二级参考文献70

  • 1方前锋,王先平,程帜军,张国光.新型La_2Mo_2O_9基氧离子导体的研究进展[J].无机材料学报,2006,21(1):1-11. 被引量:13
  • 2DICKS A L. Hydrogen generation from natural gas for the fuel cell systems of tomorrow [J]. Journal of Power Sources, 1996, 61(1/2): 113-124.
  • 3PARK S, GORTE R J, VOHS J M. Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Applied Catalysis A: General, 2000, 200(1):55-61.
  • 4AQUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance [J]. Journal of Power Sources, 2004, 138(1/2): 120-136.
  • 5GAO Z, SEKIZAWA K, EGUCHI K. Power generation characteristics of SOFC with internal CO2 reforming of methane [J]. Electrochemistry, 1999, 67(4): 336-339.
  • 6ZHAN Z, BARNETT S A. Solid oxide fuel cells operated by internal partial oxidation reforming of iso-octane [J].Journal of Power Sources, 2006, 155(2): 353-357.
  • 7ZHAN Z, BARNETT S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308 (5723): 844-847.
  • 8TAO S, IRVINE J T S. A redox-stable efficienl anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320-323.
  • 9HUANGYH, DASSRI, KINGZL, et al. Double pervoskite as anode materials for solid-oxide fuel cells [J]. Science, 312 (5771): 254-257.
  • 10RUIZ-MORALES J C, CANALESVAZQUEZ J, SAVANIU C, et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation[J]. Nature, 2006, 439 (7076): 568-571.

共引文献25

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部