期刊文献+

基于背景配准的矿井危险区域视频目标检测算法 被引量:6

Video Detection Algorithm for Object in Dangerous Area of Mine Based on Background Registration
下载PDF
导出
摘要 针对矿井危险区域视频监控视场背景复杂,难以实现视频目标精确提取的问题,提出了一种基于背景配准的视频目标检测算法。该算法实现步骤:提取SIFT特征点,计算特征点区域H-S光流矢量;通过区域运动特性分析提取出背景运动区域,对背景运动区域特征点做帧间匹配;计算仿射参数,配准差分后提取出精确的目标区域。实验结果表明,该算法能够去除前景目标特征点对背景配准的影响,可获得较为精确的目标区域。 In view of problem that background of field video of video monitoring in dangerous area of mine is complex,so as to be difficult to realize accurate extraction of video object,the paper proposed a video detection algorithm for object based on background registration.Implementing steps of the algorithm are as follows: extracting SIFT feature points and calculating H-S optical flow vector of the feature points area;extracting motion area of background by analyzing area motion performance and making frames matching for feature points of motion area of background;calculating affine parameters and extracting accurate object area after registration and difference.The experiment result showed that the algorithm can remove influence of feature points of foreground object on background registration and can gain accurate object area.
出处 《工矿自动化》 2011年第3期48-50,共3页 Journal Of Mine Automation
关键词 矿井危险区域 智能视频分析系统 视频目标检测 SIFT特征 H-S光流矢量 背景配准 仿射参数 dangerous area of mine intelligent video analyzing system video detection of object SIFT feature H-S optical flow vector background registration affine parameter
  • 相关文献

参考文献7

  • 1田隽,钱建生,厉丹,李世银.基于多摄像机的矿井危险区域目标匹配算法[J].中国矿业大学学报,2010,39(1):139-144. 被引量:5
  • 2LOWED G. Distinctive Image Features from Scaleinvariant Key Points [J]. International Journal of Computer Vision, 2004,60 (2) : 91-110.
  • 3HORN B K P, SCHUNCK B G. Determining Optical Flow[J]. Artificial Intelligence, 1981,17 : 185-203.
  • 4MIKOLAJCZYKK, SCHMID C. A Performance Evaluation of Local Descriptors [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10) : 1615-1630.
  • 5MIKOLAJCZYK K, SCHMID C. An Affine Invariant Interest Point Deteetor[C]// European Conference on Computer Vision,2002 ,Copenhagen: 128-142.
  • 6YAN K, RAHUL S. PCA-SIFT : A More Distinctive Representation for Local Image Descriptors [C]//IEEE Conference on Computer Vision and Pattern Recognition , 2004, Washington: 503-506.
  • 7卢宇,祝豪,吴钦章.一种基于背景配准的光流场算法[J].半导体光电,2008,29(1):126-130. 被引量:4

二级参考文献23

  • 1KELLY P H, KATKERE A, KURAMURA D Y, et al. An architecture for multiple perspective interactive video[C]//Proc of the 3nd ACM International Conference on Multimedia. San Francisco: [s. n. ], 1995: 201-212.
  • 2ZHOU Qu-ming, AGGARWAL J K. Object tracking in an outdoor environment using fusion of features and cameras [J ]. Image and Vision Computing, 2006, 24(11): 1244-1255.
  • 3XU M, ORWELL J, LOWEY L, et al. Architecture and algorithms for tracking football players with multiple cameras [J]. Image and Signal Processing, 2005,152(2): 232-241.
  • 4JAVERD O, RASHEED Z, SHAFIQUE K, et al. Tracking across multiple cameras with disjoint views [C]//Proceedings of IEEE International Conference on Computer Vision. Nice: [s. n], 2003:165-171.
  • 5CALDERARA S, PRATI A, VEZZANI R, et al. Consistent labeling for multieamera object tracking [J]. IEEE Trans on PAMI, 2003, 25(10):1355-1360.
  • 6FISCHLER MA, BOLLES RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography [J]. CACM, 1981,24(6) :381-395.
  • 7HARTLEY R. Multiple view geometry in computer vision[M]. Cambridge: Cambridge University Press, 2000.
  • 8LUCAS B D, KANADE T. An Iterative image registration technique with an application to stereo vision [C]//Proc 7th International Joint Conf on Artificial Intelligence. Vancouver: [s. n], 1981: 674-679.
  • 9BARRON J L, FLEET D J, BEAUCHEMIN S S, et al. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1992, 12 (1) : 43-77.
  • 10LOWE DAVID G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.

共引文献7

同被引文献45

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部