期刊文献+

基于水声传感器网络的目标纯方位运动分析 被引量:5

Bearing-only Target Motion Analysis Based on Underwater Sensor Networks
下载PDF
导出
摘要 研究了基于水声传感器网络的目标纯方位运动分析原理及方法,建立了基于水声传感器网络的目标运动分析模型。在此基础上,讨论了模型中多维非线性估计问题,提出了一种基于传感器网络新的水下目标运动分析方法。该方法采用改进的粒子滤波EKF-PF(扩展卡尔曼-粒子滤波)算法实现,并与传统的扩展卡尔曼滤波(EKF)和粒子滤波(PF)算法进行了比较。通过Monte Carlo仿真分析,表明基于水声传感器网络的目标运动分析方法充分利用了网络的优势和当前测量信息。这种方法对水下目标运动状态估计时,不仅降低了计算量而且表现出较高的估计精度。所得结论为水下传感器网络进行目标被动定位提供了参考。 Basic principle and method for target motion analysis,based on bearing measurement with underwater sensor networks,is studied in this paper.A new target motion analysis(TMA) algorithm which perfectly combines the extended kalman and particle filter(EKF-PF) is presented based on the discrete nonlinear model of passive localization in underwater sensor networks,with system design consideration and iterated method included.Furthermore,through Monte Carlo simulations the algorithm is compared with extended kalman filter(EKF) and particle filter(PF).The results demonstrate that the proposed new TMA has less computation and better performance because it utilizes current data of measurement to acquire the posteriori estimation of the nonlinear system.
出处 《中国造船》 EI CSCD 北大核心 2011年第1期90-96,共7页 Shipbuilding of China
关键词 水下传感器网络 纯方位 目标运动分析 粒子滤波 underwater acoustic sensor networks bearing-only target motion analysis particle filter
  • 相关文献

参考文献9

  • 1AKYILDIZ F I, POMPILI D, MELODIA T. Underwater acoustic sensor networks; research challenges[J]. Ad Hoc Networks (Elsevier) , 2005, 3 (3) :257-279.
  • 2CHANDRASEKHAR V, YOO S C. Localization in underwater sensor networks-survey and challenges[C]//The ACM International Workshop on Underwater Nerworks, WUWNet'06, Los Angeles, California, USA, September 25, 2006.
  • 3李淑秋,李启虎,张春华.第六讲 水下声学传感器网络的发展和应用[J].物理,2006,35(11):945-952. 被引量:35
  • 4陈小惠,陈蓓玉,郑子扬.分布式水下多传感器多目标模糊跟踪融合方法[J].中国造船,2006,47(3):77-83. 被引量:4
  • 5ZHOU Shenli, WILLETT P. Submarine location estimation via a network of detection-only sensors[J]. IEEE Trans.on Signal Processing, 2007, 55 (6) : 3104-3115.
  • 6WANG Biao, LI Yu, HUANG Haining, ZHANG Chunhua. Target localization in underwater acoustic aensor network[C]//Intemational Conference on hnage and Signal Processing (CISP) , IEEE, Sanya, China,2008.
  • 7LANEUVILLE D, JAUFFRET C. Recursive bearings-only TMA via unscented kalman filter: cartesian vs. modified polarcoordinates[C]//International Conference on Aerospace, IEEE, Toulon ,France,2008.
  • 8ARULAMPALAM S, MASKELL S, GORDON N, CLAPP T. A tutorial on particle filters for online nonlmear/non-gaussian bayesian tracking [J]. IEEE Trans. on Signal Processing, 2002,50 (2) : 174-188.
  • 9PETAR M D, MAHESH V, BUGALLO M F. Target tracking by particle filtering in binary sensor networks[J]. IEEE Trans.on Signal Processing, 2008, 56 (6) :2229-2238.

二级参考文献34

  • 1Cheng K C, Saha R K, Bar-shalom Y. On optimal track-to-track fusion[J]. IEEE Trans. on AES, 1997,33(4):1271-1276.
  • 2Bar-shalom Y. Multitarget-multisensor Tracking: Advanced Applications[M]. Boston, MA: Artech House, 1989. 167-206.
  • 3Zhang Y, Leung H, Lo T, Litva J. Distributed sequential nearest neighbour multitarget tracking algorithm[J]. IEEE Proc. -RSN, 1996,143 (4) :255-260.
  • 4陈小惠,邰滢滢,章飞.舰载水声系统数据融合系统研究[R].江苏科技大学,2004-4.
  • 5Rice J A,Creber R et al.Proc.IEEE Oceans,2000 Conf.,2000,3:2007
  • 6Rice J A,Creber R K et al.Biennial Review 2001.SSC San Diego Technical Document TD 3117,2001:234
  • 7Sozer E M,Stojanovic M,Proakis J G.IEEE Journal of Oceanic Engineering,2000,25(1):72
  • 8Akyildiz I F,Pompili D,Melodia T.Ad Hoc Networks,2005,3(3):257
  • 9Rice J A,Baxley P A.SSC San Diego In-House Laboratory Independent Research 1998 Annual Report,2000(4):33
  • 10Bucker H.J.Acoust.Soc.Am.1994,95 (5):2437

共引文献37

同被引文献57

  • 1董志荣.纯方位系统TMA非线性最小二乘法——工程数学模型与算法[J].情报指挥控制系统与仿真技术,2005,27(2):4-7. 被引量:10
  • 2YANG Kunde MA Yuanliang ZHANG Zhongbing ZOU Shixin.Robust adaptive matched field processing with environmental uncertainty[J].Chinese Journal of Acoustics,2006,25(2):159-170. 被引量:9
  • 3陈小惠,陈蓓玉,郑子扬.分布式水下多传感器多目标模糊跟踪融合方法[J].中国造船,2006,47(3):77-83. 被引量:4
  • 4Bar-Shalom Y.Estimation and tracking-principles,techniques,andsoftware[M].Boston,London:Artech House,1993:382-410.
  • 5Julier S J,Uhlmann J K.Unscented filtering and nonlinear estima-tion[J].Proceedings of IEEE,2004,92(3):1015-1022.
  • 6Gordon N J,Salmond D J,Smith A F M.Novel approach to non-linear/non-Gaussian Bayesian state estimation[J].Radar andSignal Processing,1993,140(6):107-113.
  • 7Laneuville D,Jauffret C.Recursive bearings-only TMA via unscentedKalman filter:Cartesian vs modified polar coordinates[C] ∥2008Aerospace Conference,IEEE,Toulon,DCNS,2008:1-11.
  • 8Harrison P J,Stevens C F.Bayesian forecasting[J].Journal of theRoyal Statistical Society,1976,3:205-247.
  • 9Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particlefilters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 10Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sam-pling methods for Bayesian filtering[J].Statistics and Compu-ting,2000,10(3):197-208.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部