期刊文献+

稳健主成分回归及其医学应用 被引量:2

Robust Principal Component Regression and Application of Medicine
下载PDF
导出
摘要 目的探讨主成分回归模型的一种稳健估计方法。方法将稳健主成分分析方法ROBPCA(robust principal component regression)和重新加权的LTS(least trimmed squares)方法结合起来,同时结合实例分析,建立稳健主成分回归方程,并可以生成诊断图来诊断异常点。结果用含有异常点的原始数据得到的稳健模型,拟合效果较好。解决了主成分回归中存在异常点的问题。结论当主成分回归中存在异常点时,本文中所述的稳健主成分回归方法具有较高的稳健性,有较好的应用前景。 Objective To explore the robust estimate method of principal component regression model. Methods Introduce a robust PCR which combines ROBPCA(robust principal component analysis) and robust regression- LTS ( least trimmed squares) method to establish model using a practical example. Results The robust principal component regression model has a better fitness than that of the original data in which outliers are not detected and removed. It is better to solve the outliers problem in PCR. Conclusion The robust principal component regression has a high robustness when there axe outliers in PCR and should be widely used.
出处 《中国卫生统计》 CSCD 北大核心 2011年第1期22-25,共4页 Chinese Journal of Health Statistics
基金 山西省自然基金资助项目(项目编号20021104)
关键词 ROBPCA法 重新加权的LTS估计 稳健主成分回归 异常点诊断 POBPCA method LTS Robust principalcomponent regression Outlier diagnosis
  • 相关文献

参考文献10

  • 1郭东星,刘伟新.主成分回归中异常点的稳健诊断[J].中国卫生统计,2008,25(1):31-34. 被引量:2
  • 2刘伟新,郭东星.主成分回归中异常点的二步诊断法及其医学应用[J].现代预防医学,2007,34(13):2423-2425. 被引量:3
  • 3Mia H,Peter JR. ROBPCAza new approach to robust principal component analysis. Technometrics ,2005,47:64-79.
  • 4Jolliffe IT. Principal component analysis. New York : Springer, 1986.
  • 5Li G, Chen Z. Projection-Pursuit approach to robust dispersion matrices and principal components:primary theory and Monte Carlo. Journal of American statistical association, 1982,80:759-766.
  • 6Rousseeuw PJ, Van DK. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 1999,41 : 212 -223.
  • 7Croux C ,Haesbroeck G. Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. Journal of Multivariate Analysis, 1999,71 : 161-190.
  • 8Pell RJ. Multiple outlier detection for multivariate calibration using robust statistical techniques. Chemometrics and Intelligent Laboratory Systems, 2000,52 : 87-104.
  • 9Rousseenw PJ, Leroy A. Robust regression and outlier detection. New York : John wiley, 1987. 1998,28:259-272.
  • 10Walczak B. Outlier detection in multivariate calibration. Chemometrics and Intelligent Laboratory Systems,.

二级参考文献14

  • 1余松林,向惠云.线性回归分析中异常点的诊断统计量[J].中国卫生统计,1993,10(3):19-22. 被引量:6
  • 2Joliffe,I.T.Principal Component Analysis[M].New York:Springer,1986.130-135.
  • 3Tormod Ns.Leverage and influence for principal component regression[J].Chemometrics and Intelligent Laboratory Systems,1989(5):155-168.
  • 4Rousseeuw.P.J.,Leroy,A..Robust Regression and Outlier Detection[M].New York:John wiley.1987.227-228.
  • 5Walczak B, Massart DL. Robust principal components regression as a detection tool for outliers. Chemometrics and Intelligent Laboratory Systems, 1995, 27:41-54.
  • 6Devlin JS, Gnanadesikan R, Kettenring JR. Robust estimation of dispersion matrices and principal components, Journal of the American Statistical Association, 1981, 76 : 354-362.
  • 7Rousseeuw PJ, Leroy A. Robust Regression and Outlier Detection. New York:John wiley, 1981.
  • 8Rousseeuw PJ. Least median of squares regression. Journal of American statistist association, 1981, 79 : 871-880.
  • 9Massart DL, Rousseeuw PJ. Least median of squares: a robust method for outlier and model error in regression and calibration. Analytica Chimica Acta, 1986, 187:171-179.
  • 10王彤,何大卫.线性回归中多个异常点的稳健诊断及医学应用[J].中国卫生统计,1998,15(5):1-4. 被引量:7

共引文献3

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部