期刊文献+

支持向量机在步态识别算法中的应用研究

Study on Gait Recognition Based on Support Vector Machine
下载PDF
导出
摘要 步态识别是图像处理领域的一个新兴热点。人行走姿态准确识别困难因素较多,由于步态数据是一种高维、小样本数据,传统识别方法不能检测前景与背景差异情况,导致识别正确率比较低。为了快速准确地进行步态识别,提出支持向量机的步态识别方法。方法首先根据步态图像中前景点与背景点的差值,自适应计算区分前景点与背景点的阈值,根据阈值对步态图像进行二值化,在特征提取阶段,采用水平、垂直和对角线3个方向提取步态信息,并通过小波变换进行特征维数约简,最后将小波变换提取维步态特征采用支持向量机学习得到步态识别结果。在中国科学院自动化所的CASIA步态数据库上进行了识别仿真,结果表明,方法的识别正确率有所提高,且识别的速度加快,是步态识别有效的方法,并具有广阔的应用前景。 Gait recognition is a new field of image processing.Classic gait identification method can not detect foreground and background differences and is difficult to obtain good generalization performance.In order to impove the recognition rate,a gait recognition method is proposed based on support vector machine(SVM).This method uses adaptive calculation to distinguish the foreground and background points threshold firstly,and then adopts horizontal and vertical direction and diagonal,and through information extraction of wavelet transform characteristic dimension reduction,finally the gait characteristic extracted with wavelet transform is learned by using support vector machine to obtain the gait recognition results.With the CASIA gait database of Chinese academy of sciences institute of automation,recognition simulation experiments are carried out,The results show that this method improves the accuracy and speed of recognition,is one of the effective method in gait identification field,and has wide application prospects.
出处 《计算机仿真》 CSCD 北大核心 2011年第3期302-305,398,共5页 Computer Simulation
关键词 步态识别 小波变换 支持向量机 Gait recognition Wavelet transform Support vector machine(SVM)
  • 相关文献

参考文献6

  • 1A K Jain, R Bolle, S Pankanti. Biometrics: personal identification in a networked society[ M ]. Kluwer Academic Publishers, 1999. 103-121.
  • 2Shutler J moments, Nixon M, C Harris. Statistical gait recognition via temporal In Interpretation[ C]. Proc IEEE Southwest Symposium on Image Analysis and Austin, Texas, 2000. 291-295.
  • 3Anil K Jain, Arun Ross, Salil Prabhakar. An introduction to biometric recognition [ J ]. IEEE Transactions on Circutts and Systems for Video Technology, 2004,14 (1) :4-20.
  • 4K Mark, S Nixon, John N Carter. Advances in automatic gait recognition[ C]. In: Proceedings. Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. 139-144.
  • 5闰尚彬,韩宝玲,罗庆生.仿生六足步行机器人步态轨迹的研究与仿真[J].计算机仿真,2007,24(10):156-160. 被引量:11
  • 6田光见,赵荣椿.基于连续隐马尔可夫模型的步态识别[J].中国图象图形学报,2006,11(6):867-871. 被引量:6

二级参考文献15

  • 1贾卫平.Stanford机械手运动路径轨迹的规划研究[J].机械工程师,2005(6):38-40. 被引量:1
  • 2Nixon M S,Carter J N,Cunado D,et al.Automatic gait recognition [A].In:Proceedings of IEE Colloquium "Motion Analysis and Tracking" [C],London,U.K.,1999:1/3 ~6/3.
  • 3Amit Kale,Rajagopalan A N,Sundaresan A,et al.Identification of Humans Using Gait[R].MD 20740,Center for Automation Research University of Maryland at College Park,2002.
  • 4Lily Lee.Gait Analysis for Classification [R].AI Technical Report 2003-014,The city of Cambridge,Massachusetts,USA:Massachusetts Institute of Technology-Artificial Intelligence Iaboratory,2003.
  • 5Cunado D,Nash J M,Nixon M S,et al.Gait extraction and description by evidence-gathering [A].In:Proceedings of the International Conference on Audio and Video Based Biometric Person Authentication[C],Washington DC,USA,1999:43 ~ 48.
  • 6Wang Liang,Tan Tie-niu,Ning Hua-zhong,et al.Silhouette analysis-based gait recognition for human identification [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1505 ~ 1518.
  • 7Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis,and Machine Vision (1 edition) [ M ].London,U K:Chapman & Hall computing Series.Chapman & Hall Computing,1993:45 ~ 48.
  • 8Zhang Deng-sheng,Lu Guo-jun.A comparative study on shape retrieval using fourier descriptors with different shape signatures[ A].In:Proceedings of IEEE Conference on Multimedia and Expo(ICME'01) [C],Tokyo,Japan.,2001,8:317 ~ 320.
  • 9Rabiner L R.A tutorial on hidden Markov models and selected applications in speech recognition [ J].Proceedings of the IEEE,1989,77(2):257 ~285.
  • 10Philips P J,Moon H,Rizvi S A.The feret evaluation methodology for face-recognition algorithms [J].IEEE Transactions on Pattern Analysis and Machine Intelligent,2000,22 (10):1090 ~ 1100.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部