期刊文献+

基于日志的异常软件使用模式检测

Anomaly Software Use Pattern Detection Based on Log
下载PDF
导出
摘要 提出了使用日志的孤立点分析方法,对日志数据进行预处理,确立合适的挖掘粒度,刻画出正常模式。改进的方法可对规模较大的数据集进行异常检测,在降低误报率的同时,大大提高检测率,并达到理想的时间效率;使系统定期分析用户日志,从中自动找到可疑的日志,及时预防或者处理非法操作的现象,提高检测系统的智能化、准确性和检测效率。 The use of outlier log analysis was proposed where the log data were preprocessed to establish the appropriate mining size and depict a normal mode. The improved method can be used for the large-scale anomalous detection of data sets, reducing the false alarm rate and greatly improving the detection rate to achieve the desired time efficiency. The system can analyze the users' logs regularly, find the suspect from the logs automatically, prevent and deal with the illegal operations in a timely manner. Therefore, it can improve the degree of intelligence, and the accuracy and efficiency of detection.
出处 《淮海工学院学报(自然科学版)》 CAS 2011年第1期24-28,共5页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 日志 数据挖掘 孤立点 高维数据 log data mining outlier high-dimensional data
  • 相关文献

参考文献7

二级参考文献74

  • 1陆介平,倪巍伟,孙志挥.基于关联分析的高维空间异常点发现[J].应用科学学报,2006,24(1):60-63. 被引量:2
  • 2王宏鼎,童云海,谭少华,唐世渭,杨冬青.异常点挖掘研究进展[J].智能系统学报,2006,1(1):67-73. 被引量:22
  • 3杨宜东,孙志挥,朱玉全,杨明,张柏礼.基于动态网格的数据流离群点快速检测算法[J].软件学报,2006,17(8):1796-1803. 被引量:22
  • 4周晓云,孙志挥,张柏礼,杨宜东.高维类别属性数据流离群点快速检测算法[J].软件学报,2007,18(4):933-942. 被引量:21
  • 5KNORR E M, NG R T. Algorithms for mining distance-based outliers in large datasets[ C]//Proc of VLDB' 98. San Francisco, CA: Morgan Kaufmann Publishers, 1998:392-403.
  • 6HAWKINS D. Identification of outliers [ M ]. London : Chapman & Hall, 1980.
  • 7TAN Pang-ning, STEINBACH M, KUMAR V. Introduction to data mining[ M]. Boston: Pearson Addison-Wesley Education Inc, 2006.
  • 8KNORR E, NG R. Finding intentional knowledge of distance-based outliers[C]//Proc of VLDB'99. Edinburgh: [s. n. ], 1999:211-222.
  • 9KNORR E M, NG R T, TUCAKOV V. Distance-based outliers: algorithms and applications[ J ]. The VLDB Journal, 2000,8 (3-4) : 237-253.
  • 10AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of SIGMOD' 93. New York: ACM Press, 1993:207-216.

共引文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部