期刊文献+

Empirical Bayes Test for the Parameter of Rayleigh Distribution with Error of Measurement 被引量:1

Empirical Bayes Test for the Parameter of Rayleigh Distribution with Error of Measurement
下载PDF
导出
摘要 For the data with error of measurement in historical samples, the empirical Bayes test rule for the parameter of Rayleigh distribution is constructed, and the asymptotically optimal property is obtained. It is shown that the convergence rate of the proposed EB test rule can be arbitrarily close to O(n-1/2) under suitable conditions. For the data with error of measurement in historical samples, the empirical Bayes test rule for the parameter of Rayleigh distribution is constructed, and the asymptotically optimal property is obtained. It is shown that the convergence rate of the proposed EB test rule can be arbitrarily close to O(n-1/2) under suitable conditions.
作者 HUANG JUAN
机构地区 School of Science
出处 《Communications in Mathematical Research》 CSCD 2011年第1期17-23,共7页 数学研究通讯(英文版)
基金 The NSF(1012138,0612163)of Guangdong Ocean Unversity the Scientific and Technological Project(2010C3112006)of Zhanjiang
关键词 error of measurement empirical Bayes asymptotic optimality convergence rate error of measurement, empirical Bayes, asymptotic optimality, convergence rate
  • 相关文献

参考文献10

  • 1Johns, M. V Jr. and Van Ryzin, J., Convergence rates in empirical Bayes two-action problems 1: Discrete case, Ann. Math. Statist., 42(1971), 1521-1539.
  • 2Johns, M. V Jr. and Van Ryzin, J., Convergence rates in empirical Bayes two-action problems 2: Continuous case, Ann. Math. Statist., 43(1972), 934-947.
  • 3Liang, Tachen, Empirical Bayes testing for double exponential distributions, Comm. Statist.- Theory Methods, 36(2007), 1543-1553.
  • 4Chen, L. S., On empirical Bayes two-tail tests for double exponential distributions, J. Nonparametr. Statist., 21(2009), 1037-1049.
  • 5Dunson, D. B., Empirical Bayes density regression, Statist. Sinica, 17(2007), 481-504.
  • 6Liang, T., Empirical Bayes testing for a normal mean: variance unknown case, J. Statist. Planning Inference, 136(2006), 1376-1393.
  • 7Chen, Lee, Shen., Empirical Bayes testing for a nonexponential family distribution, Comm. Statist.- Theory Methods, 36(2007), 2061-2074.
  • 8Karunamuni, R. J., Liang, T. and Wu, J., Robust empirical Bayes tests for discrete distributions, J. Nonparametr. Statist., 20(2008), 101-113.
  • 9Davis, D. J., An analysis of some failure data, J. Amer. Statist. Assoc., 47(1952), 113-150.
  • 10Fuller, W. A., Measurement Error Model, Wiley, New York, 1987.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部