期刊文献+

模糊神经网络在自来水浊度检测中的应用 被引量:3

Application of Fuzzy Neural Network in the Turbidity Detection for Tap Water
下载PDF
导出
摘要 针对流动电流仪检测自来水浊度的精度受絮凝剂浓度、原水流量、供电电源波动和温度等干扰影响较大的问题,提出一种基于模糊神经网络融合技术的自来水浊度检测数据处理方法。该方法将模糊推理融入神经网络结构中,弥补了纯神经网络在处理模糊数据方面的不足以及纯模糊控制系统在学习方面的缺陷,实现了计算方法的优势互补。仿真结果表明,这种方法能够有效提高自来水浊度检测的精度,在自来水的生产应用中效果良好。 By using streaming current meter,the turbidity detection for tap water is facing the problem of accuracy greatly influenced by the concentration of flocculent,flow rate of raw water,fluctuation of the power supply and temperature.Aiming at this problem,the turbidity detection and data processing method based on fuzzy neural network fusion technology is proposed.In this method,the fuzzy reasoning is integrated into the structure of neural network;this complements the demerit of pure neural network in processing fuzzy data,and the defect of pure fuzzy control system in learning,thus implements mutual complement of the superiorities of the calculation methods.The result of simulation indicates that this method effectively enhances the accuracy of turbidity detection and offers excellent effects in tap water production.
出处 《自动化仪表》 CAS 北大核心 2011年第3期53-56,共4页 Process Automation Instrumentation
关键词 模糊神经网络 电流仪 浊度检测 数据融合 干扰 精度 Fuzzy neural network Current meter Turbidity detection Data fusion Interference Accuracy
  • 相关文献

参考文献13

二级参考文献39

共引文献64

同被引文献26

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部