期刊文献+

示踪材料在内爆X光诊断过程中的作用

Effects of tracer in fuel on X-ray diagnostics of implosion
下载PDF
导出
摘要 激光聚变内爆实验中,在燃料中掺杂少量比例的中高Z材料,用X光光谱和X光成像测量掺杂元素的发射信息,诊断燃料的温度、密度和压缩形状。用辐射流体力学数值计算和X光成像后处理程序综合分析方法,给出了内爆靶丸优化设计,并讨论示踪材料在X光诊断中的作用。结果表明:在靶丸燃料D2中掺原子分数约1.0%的氩,内爆压缩中子产额下降约15%。由于氩线发射使整个燃料区X光发射强度提高约50倍,X光成像区域增大约30%,有利于实验诊断测量燃料芯部。为了测量燃料区的边界,在CH内壳层涂厚度0.05μm的硫,分析表明硫Ly-α单能成像大小与流体力学计算的燃料区大小一致,可用于诊断燃料最终压缩界面。数值分析结果得到了神光Ⅱ间接驱动内爆物理相关实验的验证。 Diagnosing conditions of compressed fuel is a critical aspect of ICF capsule implosion experiments.A common diagnostic technique is to add a small concentration of high-or mid-Z dopant to the fuel,and measure the emission from the dopant either spectroscopically or by imaging.With radiative hydrodynamic simulations and post-processing of X-ray imaging for implosions,the designs of the fuel capsule are optimized,and the effects of tracer in fuel on X-ray diagnostics of implosion are analyzed.The results show that for the capsule of D2 fuel doped with argon at about 1% atomic fraction,although the implosion yield reduces by about 15%,the X-ray intensity of fuel increases by 50 times and the size of X-ray imaging is enlarged by about 30%,which is beneficial to the diagnosis of the fuel core.For the capsule with 0.05 μm thick sulfur coated inside the CH shell,the dimensions of sulfur Ly-α monochromatic X-ray imaging accord with those of the fuel region,and thus the compressed boundary of fuel can be deduced.Above analysis results have been validated by Shenguang Ⅱ implosion experiments.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第3期693-696,共4页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(10975025) 计算物理实验室基金项目 国家高技术发展计划项目
关键词 激光聚变 内爆 示踪元素 燃料界面 X光诊断 laser fusion implosion tracer fuel boundary X-ray diagnostics
  • 相关文献

参考文献11

二级参考文献49

  • 1段斌,李月明,方泉玉,张继彦.ICF中靶丸内等离子体的温度和密度的估算[J].强激光与粒子束,2005,17(1):55-58. 被引量:8
  • 2张继彦,杨国洪,缪文勇,丁耀南.激光间接驱动内爆靶丸的X光诊断[J].强激光与粒子束,2006,18(6):939-943. 被引量:8
  • 3Magelssen G R, Delamater N D, LinDman E L, et al. Measurements of early time radiation asymmetry in vacuum and methane-filled Hohlraums with the reemission ball teehnique[J]. Phys Rev E ,1998,57(4) :4663-4672.
  • 4Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Faeility[J]. Phys Plasmas, 2004,11 (2) : 339-391.
  • 5Hauer A A, Surer L, Delamater N, et al. The role of symmetry in indirect-drive laser fusion[J]. Phys Plasmas ,1995,2(6) :2488-2494.
  • 6Atzeni S. Sensitivity of ICF reactor targets to long-wavelength drive nonuniformities[J]. Europhys Lett, 1990,11 (7):639-644.
  • 7Haan S W, Pollaine S M, Lindl J D, et al. Design and modeling of ignition targets for the National Ignition Facility[J]. Phys Plasmas, 1995,2(6) :2480-2487.
  • 8Hauer A. X-ray driven implosions in laser heated hohlraums[C]//Proceedings of the Scottish Universities Summer School in Physics. 1995, 5:45-77.
  • 9Chang T Q, Ding Y K, Lai D X, et al. Laser hohraum coupling efficiency on the Shenguang Ⅱ faclity[J]. Phys Plasmas, 2002,9(11) :4744- 4748.
  • 10Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys of Plasmas, 1995,2( 11 ) : 3933-4024.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部