期刊文献+

并行自适应免疫量子粒子群优化算法 被引量:4

Parallel Adaptive Immune Quantum-behaved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为克服粒子群优化算法早熟收敛及粒子在进化过程中缺乏方向指导的问题,采用量子技术及免疫机制,提出一种自适应免疫量子粒子群优化算法。针对其计算量大、耗时长的缺点,结合已有的并行计算技术,构造该算法的并行计算方法。仿真实验结果表明,该并行算法在搜索能力和运行时间方面具有较好的性能。 In order to escape from premature convergence and lack of good direction in particles,the evolutionary process,quantum technology and immunologic mechanism are employed,and an adaptive immune quantum-behaved Particle Swarm Optimization(PSO) algorithm is provided.Meanwhile,according to larger calculation and longer consumed time,parallel computation technology is introduced into the provided algorithm.Simulation experiments show that the PSO algorithm has better performance.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期221-223,共3页 Computer Engineering
基金 四川省科技厅支撑计划基金资助项目(2008FZ0109) 四川省科技厅应用基础基金资助项目(2009JY0134)
关键词 粒子群优化算法 量子技术 免疫机制 并行计算 Particle Swarm Optimization(PSO) algorithm quantum technology immunologic mechanism parallel computation
  • 相关文献

参考文献7

二级参考文献30

  • 1刘鑫朝,颜宏文.一种改进的粒子群优化RBF网络学习算法[J].计算机技术与发展,2006,16(2):185-187. 被引量:15
  • 2刘哲,张克军.基于免疫记忆克隆选择算法设计低复杂整型数字滤波器[J].微电子学与计算机,2006,23(7):165-167. 被引量:1
  • 3陈伟,冯斌,孙俊.基于QPSO算法的RBF神经网络参数优化仿真研究[J].计算机应用,2006,26(8):1928-1931. 被引量:24
  • 4张海龙,王莲芝.自动文本分类特征选择方法研究[J].计算机工程与设计,2006,27(20):3840-3841. 被引量:45
  • 5van Soest A J, Casius L J R.The merits of a parallel genetic algorithm in solving hard optimization problems[J].Journal of Biomechanical Engineering,2003,125 : 141-146.
  • 6Kennedy J,Eberhart R.Particle swarm optimization[C]//Proc IEEE Int Conf on Neural Network, 1995 : 1942-1948.
  • 7Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//IEEE Iternational Conference of Evolutionary Computation,Ancharage, Alaska, 1998
  • 8Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center, 1999:1951-1957.
  • 9Sun J,Feng B,Xu W.Particle swarm optimization with particles having quantum behavior[C]//IEEE Proc of Congress on Evolutionary Computation, 2004: 325-331.
  • 10Fang Wei, Sun Jun,Xu Wen-bo.Design ⅡR digital filters using quantum-behaved particle swarm optimization[C]//ICNC, 2006,2.

共引文献25

同被引文献25

  • 1许少华,何新贵.基于函数正交基展开的过程神经网络学习算法[J].计算机学报,2004,27(5):645-650. 被引量:73
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3Sun Jun, Feng Bin, Xu Wenbo. Particle Swarm Optimization with Particles Having Quantum Behavior//Proc of the Congress on Evo- lutionary Computation. Portland, USA, 2004 : 325-331.
  • 4Sun Jun, Xu Wenbo. A Global Search Strategy of Quantum Behaved Particle Swarm Optimization//Proc of the IEEE Conference on Cy- bernetics and Intelligent Systems. Singapore, Sin4;apore, 2004:111-116.
  • 5van Den,Bergh F,Engelbrecht A P. A New Locally Con-vergent Particle Swarm Optimizer[A].IEEE Press,2002.94-99.
  • 6Clere M,Kennedy J. Particle Swarm Optimization Explosion,Stability,and Convergence in a Multidimensional Complex Space[J].IEEE Transactions on Evolutionary Computation,2002,(01):58-73.
  • 7Sun Jun,Feng Bin,Xu Wenbo. Particle Swarm Optimization with Particles Having Quantum Behavior[A].Piscataway,USA,2004.325-331.
  • 8徐泽水.直觉模糊信息集成理论及应用[M]北京:科学出版社,2008187-197.
  • 9陈季林.Ekeland变分原理的应用[J].云南师范大学学报(自然科学版),2008,28(3):18-20. 被引量:2
  • 10钟文亮,王惠森,张军,涂德键.带启发性变异的粒子群优化算法[J].计算机工程与设计,2008,29(13):3402-3406. 被引量:6

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部