期刊文献+

基于结构和纹理特征融合的场景图像分类 被引量:3

Scene Image Categorization Based on Structure and Texture Feature Fusion
下载PDF
导出
摘要 利用整体结构特征和局部纹理特征的优势,采用两级分类器对场景图像进行分类。第1级分类器利用全局结构信息得到候选类别,并通过分类结果判定相似类别对;第2级分类器则利用局部纹理信息区分相似类别,采用分类器的级联综合利用场景图像的整体结构信息和局部纹理信息。实验结果表明,该方法能够做到不同场景类别鲁棒分类,有效区分相似场景类别,提高场景图像的分类准确率。 This paper proposes a scene image categorization method based on structure and texture fusion.It adopts a two-layer classifier.The first classifier classifies all the scene images based on structure features,and similar categories can also be computed based on the results.The second classifier only classifies similar images and both of results are combined to predict the scene image category.Experimental result shows that categorization accuracy can be improved based on the method.
作者 程刚 王春恒
出处 《计算机工程》 CAS CSCD 北大核心 2011年第5期227-229,共3页 Computer Engineering
基金 国家自然科学基金资助重点项目(60835001) 国家自然科学基金资助项目(60802055)
关键词 结构特征 纹理特征 场景图像分类 structure feature texture feature scene image categorization
  • 相关文献

参考文献9

  • 1Csurka G, Dance C, Fan L, et al. Visual Categorization with Bags of Keypoints[C]//Proc. of the 8th European Conference on Computer Vision Workshop on Statistical Learning in Computer Vision. Prague, Czech Republic: [s. n.], 2004.
  • 2Yang Jianehao, Yu Kai, Gong Yihong, et al. Linear Spatial Pyramid Matching Using Sparse .Coding for Image Classification[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: [s. n.], 2009.
  • 3秦磊,高文.基于内容相关性的场景图像分类方法[J].计算机研究与发展,2009,46(7):1198-1205. 被引量:13
  • 4Jianixn W, Rehg J M. Where am I: Place Instance and Category Recognition Using Spatial PACT[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: [s. n.], 2008.
  • 5胡伟强,张聪品,刘超,陈智芳.基于局部特征的图像快速分类算法[J].计算机工程,2009,35(7):203-205. 被引量:5
  • 6Fei F L, Perona E A Bayesian Hierarchical Model for Learning Natural Scene Categories[C]//Proc. of IEEE Computer Society Conferenee on Computer Vision and Pattern Recognition. San Diego, USA: [s. n.], 2005.
  • 7Oliva A, Torralba A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope[J]. International Journal of Computer Vision, 2001, 42(3): 145-75.
  • 8Lazebnik S, Schmid C, Ponge J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories[C]// Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: [s. n.], 2006.
  • 9Gemert J C, Geusebroek J M, Veenman C J, et al. Kernel Codebooks for Scene Categorization[C]//Proc. of the 10th European Conference on Computer Vision: Part Ⅲ. Marseille, France: Springer-Verlag, 2008: 696-709.

二级参考文献26

  • 1董卫军,周明全,耿国华.基于纹理-形状特征的图像检索技术[J].计算机工程与应用,2004,40(24):9-11. 被引量:17
  • 2Szummer M, Picard R. Indoor-outdoor Image Classification[C]// Proc. of Workshop in Content-based Access to Image and Video Databases. Bombay, India: [s. n.], 1998: 81-90.
  • 3Chapelle O, Haffner P, Vapnik V N. SVMs for Histogram-based Image Classification[J]. IEEE Trans. on Neural Networks, 1999, 10(5): 1055-1065.
  • 4Vailaya A, Jain A, Zhang Hongjiang. On Image Classification: City vs. Landscape[C]//Proc. of Workshop in Content-based Access to Image and Video Libraries. Santa Barbara, California, USA: [s. n.], 1998: 3-8.
  • 5Vacanti G, Buis E J. High Accuracy Matching of Planetary Images[C]//Proc, of the 1st International Conference on Impact Cratering in the Solar System. Noordwijk, Netherlands:[s. n.], 2006.
  • 6Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers[J]. Machine Learning, 1997, 29(2/3): 13 1-163.
  • 7Winn J.Variational message passing and its applications[D].England:University of Cambridge,2003.
  • 8Treisman A.Gelade G.A featureintcgration theory of attention[J].Cognitive Psychology.1980.12(1):97-136.
  • 9Olira A,Torralba A.Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal on Computer Vision,2001,42 (3):145-175.
  • 10Vogel J,Schiele B.Natural scene retrieval based on a semantic modeling step[C] //Proc of the ACM Int Conf on Image and Video Retrieval.New York:ACM,2004:207-215.

共引文献16

同被引文献28

  • 1崔崟,段菲,章毓晋.利用编码层特征组合进行场景分类[J].吉林大学学报(工学版),2013,43(S1):450-454. 被引量:1
  • 2Gabriella C,Christopher R Dance,et al.Visual categorization with bags of keypoints[A].Proceedings of ECCV International Workshop on Statistical Learning in Computer Vision[C].Prague:Xerox,2004.1-22.
  • 3Lazebnik S,Schmid C,Ponce J.Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2006.2169-2178.
  • 4Dalal N,Bill Triggs.Histograms of oriented gradients for human detection[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2005.886-893.
  • 5Harzallah H,Jurie F,Schmid C.Combining efficient object localization and image classification[A].Proceedings of IEEE 12th International Conference on Computer Vision[C].USA:IEEE,2009.237-244.
  • 6Lowe D G.Distinctive image features from scale-invariant keypoint[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7Wang J J,Yang J C,Yu K.Locality-constrained linear coding for image classification[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2010.3360-3367.
  • 8Bo L F,Ren X F,Fox D.Kernel descriptors for visual recognition[A].Proceedings of Advances in Neural Information Processing Systems[C].USA:NIPS,2010.244-252.
  • 9Li Fei-Fei,et al.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories[J].Computer Vision and Image Understanding,2004,106(1):59-70.
  • 10Chang C C,Lin C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-25.

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部