期刊文献+

基于改进聚类中心分析法的红外行人分割 被引量:3

Pedestrian Segmentation in Infrared Images Based on Improved Clustering Centers Analysis Algorithm
下载PDF
导出
摘要 远红外图像中人体目标分割阈值自动选取算法的鲁棒性较差。为此,从远红外图像的成像机理出发,提出一种改进的K均值聚类中心分析法。当所属类别不同时,聚类前呈线性分布的聚类中心会在聚类后明显转折。根据该特点,将聚类后待测类别的实际聚类中心值与理论聚类中心预测值的绝对差值作为测度函数,选择转折点并确定图像分割的阈值。实验结果表明,该算法具有良好的鲁棒性与抗噪性。 Aiming at poor robustness of the threshold auto-selection algorithm in far-infrared images segmentation,an improved K-means clustering centers analysis algorithm based on the mechanism of far-infrared imaging is researched in this paper.According to the character that the cluster centers had a linear distribution before clustering and had a clear turning point after clustering when they belongs to different categories,the absolute difference between the practical cluster centers value and theoretical cluster centers predicting value of a category under test is taken as the measurement function to select the turning point,thus the threshold for image segmentation was determined.Experimental result shows good robustness and anti-noise performance of the algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第6期151-152,156,共3页 Computer Engineering
基金 教育部重点科研基金资助项目"基于红外图像的人体运动目标识别"(108174)
关键词 红外图像分割 K均值聚类中心分析 转折点选取 行人探测 infrared image segmentation K-means clustering centers analysis turning point selection pedestrian detection
  • 相关文献

参考文献7

二级参考文献42

  • 1刘贵喜,赵曙光,陈文锦.红外与可见光图像融合的多分辨率方法[J].光电子.激光,2004,15(8):980-984. 被引量:24
  • 2胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 3Aggarwal J K, Cai Q. Human motion analysis: A review [J]. Computer Vision and Image Understanding(S 1077-3142), 1999, 73(3): 428-440.
  • 4Avidan S. Support vector tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2004, 26(8): 1064-1072.
  • 5Oren M, Papageoriou C, Sinha P, et al. Pedestrian detection using wavelet template [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun 17-19, 1997. Washington D C, USA: IEEE, 1997: 193-199.
  • 6Wu Ying, Yu Ting, Hua Gang. A statistical field model for pedestrian detection [J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (S1063-6919), 2005, 1: 1023-1030.
  • 7Garcia J, Valdivia J, Vidal X. Information theoretic measure for visual target distinctness [J]. IEEE Transactions on Pattern Analysis and Machine InteUigence(S0162-8828), 2001, 23(4): 362-383.
  • 8Bertozzi M, Broggi A, Grisleri P, et al. Pedestrian detection in infrared images [C]//IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, June 9-11, 2003. Washington D C, USA: 1EEE, 2003: 662-667.
  • 9El Maadi A, Maldague X. Outdoor infrared video surveillance: A novel dynamic technique for the subtraction of a changing background oflR images [J]. Infrared Physics & Technology(S1350-4495), 2007, 49(3): 261-265.
  • 10Fengliang Xu, Xia Liu, Fujimura K. Pedestrian detection and tracking with night vision [J]. IEEE Transactions on Intelligent Transportation Systems(S1524-9050), 2005, 6(1): 63-71.

共引文献55

同被引文献25

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部