期刊文献+

搜索空间划分移动策略的研究与实现

Research and Implementation of Search Space Division and Movement Strategy
下载PDF
导出
摘要 针对进化算法收敛效率和搜索能力不能有效兼顾的缺点,提出一种搜索机制与进化机制相分离的方法——搜索空间划分移动策略,并介绍其相关理论。该策略在搜索区域划分理论基础上,加入区域移动机制,使各极值能在不同环境下相互竞争,提高其搜索能力。改进的处理机制无须考虑搜索问题,能让算法迅速收敛。记录器能有效地完成各小区域间的通信,并根据要求控制区域移动。实验结果表明该策略具有较好的准确性和效率。 Considering the contradiction between efficiency of convergency and search capability,a novel approach,search space division and movement strategy,which will separate the search mechanism from evolution mechanism,is proposed.The corresponding theory is put forward based on a deep study of both traditional and improved evolutionary algorithms.The extremums will compete with each other in different circumstances,for using the region movement mechanism which is based on the theory space division strategy.And the search capability of system is improved a lot.The improved region processor without any concern of the search problem in each region is efficient.The record is designed not only to enable the region processor to exchange information effectively,but also control the region movement mechanism in terms of various requests as well.Experimental results show that this strategy has remarkable advantage in accuracy and efficiency.
作者 何威 曾碧
出处 《计算机工程》 CAS CSCD 北大核心 2011年第6期195-197,共3页 Computer Engineering
基金 广东省自然科学基金资助项目(05001801)
关键词 空间划分 区域移动 并行遗传算法 进化规划 space division region movement parallel genetic algorithm evolutionary programming
  • 相关文献

参考文献5

二级参考文献16

  • 1赵勇,岳继光,李炳宇,张传升.一种新的求解复杂函数优化问题的并行粒子群算法[J].计算机工程与应用,2005,41(16):58-60. 被引量:17
  • 2余冬梅,张秋余,伊华伟.一种融合改进模拟退火技术的新型遗传算法[J].计算机应用,2005,25(10):2392-2394. 被引量:3
  • 3黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179. 被引量:41
  • 4马西庚,李媛媛,戴永寿.一种用于优化计算的自适应免疫遗传算法[J].计算机工程与应用,2006,42(12):41-43. 被引量:2
  • 5KENNEDY J, EBERHART R C. Particle swarm optimization[ C ]// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948.
  • 6KENNEDY J, EBERHART R C. A new-optimizer using particle swarm theory[ C ]//Proc of the 6th International Symp on Micromachine. 1995: 39-43.
  • 7PARSOPOULOS K E, VRAHATIS M N. On the computation of all global minimizers through particle swarm optimization [ J ]. IEEE Trans on Evolutionary Computation, 2004,8 ( 3 ) :211 - 224.
  • 8SCHUTTE J F , FREGLY B J. A parallel particle swarm optimizer [ C ]//Proc of the 5th World Congress of Structural and Multidisciplinary Optimization. 2003:19-23.
  • 9SHI Y, EBERHART R. A modified particle swarm optimizer [ C ]// Proc of IEEE International Conference on Evolutionary Computation ( ICEC' 98 ). 1998:69-73.
  • 10TRELEA I C. The particle swarm optimization algorithm: convergence analysis and parameter selection [ J]. Information Processing Letters,2003,85(6) :317-325.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部