期刊文献+

满足可靠性要求的轻量化车身结构多目标优化方法 被引量:42

Multi-objective Optimization Method in Car-body Structure Light-weight Design with Reliability Requirement
下载PDF
导出
摘要 车身结构轻量化设计需要满足模态、刚度和碰撞安全等多项性能要求;同时为了提高设计方案的鲁棒性,必须在设计过程中考虑不确定性因素的影响。在各种方法中,非支配排序遗传算法NSGA-Ⅱ在工程设计的多目标和可靠性设计中应用越来越广泛。在采用高强度钢板后,为确定某车身前端结构的关键零件的厚度参数,分别建立白车身有限元模型和40%偏置正面碰撞的简化模型;在优化模型中综合考虑白车身扭转刚度、最大碰撞力及平均作用力、碰撞吸能要求和质量最轻等多个性能指标要求,在构建高精度的响应面近似模型的基础上,采用非支配排序遗传算法(NSGA-Ⅱ)对其进行6σ可靠性优化设计;运用蒙特卡罗模拟技术对优化方案的鲁棒性进行评价。优化结果提高了整车的碰撞安全性,同时白车身扭转刚度和零件重量得到了很好的控制。 Lightweight design of car body structure is in demand to meet performance requirements of modes,stiffness,collision safety,etc.In order to improve the robustness of design,the uncertainty factors in the design process must be considered.In a variety of optimization designs,non-dominated sorting genetic algorithm NSGA-Ⅱis more and more widely used in the multi-objective and reliability engineering design.After application of high strength steel to the body structure in attempt for lightweight,the investigative procedures are carried out as follows to determine the effective thickness values of the key structure components in the front body structure: first,the finite element models of both the body in white and the 40% offset frontal collision are established;second,the property indexes including the torsional stiffness of entire body in white,the maximum collision force and the mean acting force,the collision energy absorption and the minimum mass etc.are considered throughout in the multi-optimization model,and then the NSGA-Ⅱ algorithm is used to perform 6σ reliability optimization based on the high-precision response surface approximation model;at last,Monte Carlo simulation technique is used to evaluate the robustness performance of the optimization scheme.The optimization results show that the vehicle collision safety performance is improved and the body torsional stiffness and structural component weight are well controlled.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第4期117-124,共8页 Journal of Mechanical Engineering
基金 科技部国际科技合作(2008DFB50020) 中央高校基本科研业务费专项资金(2009220002)资助项目
关键词 车身结构 轻量化 多目标优化 可靠性设计 Carbody structure Lightweight Multi-objective optimization Reliability design
  • 相关文献

参考文献14

  • 1SRINIVAS N,KALYANMOY D.Multi-objective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248.
  • 2李迎春,郝志峰,王宁宁.系统可靠性的多目标优化计算[J].华南理工大学学报(自然科学版),2004,32(12):80-82. 被引量:3
  • 3DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002.6(2):182-197.
  • 4YANG R J,GU L.Application of descriptive sampling and meta-modeling methods for optimal design and robustness of vehicle structures[C] //The 43rd Structures,Structural Dynamics and Materials Conference.United States,AIAA,2002:1-7.
  • 5MAGLARAS G,PONSLET E,HAFTKA R T,et al.Analytical and experimental comparison of probabilistic and deterministic optimization[J].AIAA Journal,1996,34(7):1512-1518.
  • 6SANDGREN E,CAMERON T M.Robust design optimization of structures through consideration of variation[J].Computers and Structures,2002,80(20-21):1605-1613.
  • 7KOCH P N,YANG R J,GU L.Design for six sigma through robust optimization[J].Struct Multi-dist Optim,2004,26:235-248.
  • 8王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件耐撞性优化设计[J].应用力学学报,2003,20(3):61-65. 被引量:40
  • 9CARIG K J,STANDER N,DOOGE D A,et al.Automotive crashworthiness design using response surface-based variable screening and optimization[J].Engineering Computations,2005,22(1-2):38-61.
  • 10MARKLUND P O,NILSSON L.Optimization of a car body component subjected to side impact[J].Structural and Multidisciplinary Optimization,2001,21(5):383-392.

二级参考文献21

  • 1张君媛,林逸,华伟,张敏.基于随机模拟的汽车安全带系统约束效能优化[J].汽车工程,2004,26(3):311-313. 被引量:9
  • 2钟志华.汽车耐撞性分析的有限元法[J].汽车工程,1994,16(1):1-6. 被引量:79
  • 3潘德惠.数学模型的统计方法[M].沈阳:辽宁科技出版社,1996..
  • 4Liu G R, Han X. Computational Inverse Techniques in Nondestructive Evaluation[M]. CRC Press, Boca Raton. USA,2003: 137 - 164.
  • 5Y Ohkuho, T Akamatsu, and K Shirasawa. Mean crushing strength of closed-hat section members[J], SAE Transaction, paper 740040.
  • 6Gen M, Kim J R. GA-based reliability design: State-ofthe-art survey [J]. Computer & Industrial Engineering,1999. 151 - 155.
  • 7Srinivas N, Kalyanmoy D. Multi-objective optimization using non-dominated sorting in genetic algorithms [J].Evolutionary Computation, 1994,2(3): 221 - 248.
  • 8Fonseca C M,Fleming P J. Genetic algorithms for multiobjective optimization:formulation, discussion and generation [A]. Forrest. Proceeding soft the Fifth International Conference on Genetic Algorithms [C]. San Mateo, California, University of Illinois at
  • 9Horn J, Nafpliotis N. Multi-objective optimization using the riched pareto genetic algorithm [R]. Technical Report Illi report 93005, University of Illinois at UrbanaChampaign, Urbana, Illinois, USA, 1993.
  • 10Zitzler E, Thiele L. Multi-objective optimization using evolutionary algorithms- A comparative case study [A].Eiben A E, et al. Parallel Problem Solving from NaturePPSN V [ C ]. Germany: Berlin Springer, 1998.

共引文献99

同被引文献361

引证文献42

二级引证文献261

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部