期刊文献+

非线性扩散方程和不变子空间 被引量:1

Nonlinear diffusion equation and invariant subspace
下载PDF
导出
摘要 目的研究一类在物理,化学反应,生物数学以及土壤学等领域具有广泛应用的非线性扩散方程。方法运用条件Lie-Bcklund对称和不变子空间相结合的方法求非线性扩散方程的精确解。结果对于非线性扩散方程进行完全分类。结论得到了非线性扩散方程的更丰富的解。 Aim The paper focuses on one kind of nonlinear diffusion equation which has a wide application in physical,chemical reaction,biological mathe matics,soil science and so on.Methods Combining the conditional Lie-Bcklund symmetry with invariant subspace theory.Results A complete classification for nonlinear diffusion equation is obtained.Conclusion More abundant exact solutions of nonlinear diffusion equation are obtained.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期5-7,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家博士后科学基金资助项目(20090461305) 陕西省自然科学基础研究计划基金资助项目(2009JQ1003) 陕西省教育厅科研基金资助项目(2010JK86609JK770) 数学天元基金资助项目(10926082)
关键词 非线性扩散方程 不变子空间 条件Lie-Bcklund对称 精确解 nonlinear diffusion equation invariant subspace conditional Lie-Bcklund symmetry exact solution
  • 相关文献

参考文献9

  • 1BLUMAN G W,KUMEI S.Symmetries and Differential E-quationf M].New York:Springer,1989.
  • 2BLUMAN G W,COLE J D.The general similarity solu-tions of the heat equation[J].J Math Mech,1969,18:1025-1042.
  • 3FOKAS A S,LJU Q M.Generalized conditional symme-tries and exact solution of non-integrable euqaitons[J].Theor Math Phys,1994,99:263-277.
  • 4ZHDANOV R Z.Conditional Lie Backlund symmetry and reduction of evolution equations[J].J Phys A:Math Gen,1995,28:3841-3850.
  • 5QU C Z.Reductions and exact solutions of some nonlinear partial differential equations under four types of general-ized conditional symmetries[J].J Austral Math Soc Ser B,1999,41:1-40.
  • 6GALAKTIONOV V A.Groups of scalings and invariant sets four higher-order nonlinear evolution equation[J].Differential Integeral Equations,2001,14:913-924.
  • 7GALAKTIONOV V A.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities[J].Proc Roy Soc Edinburgh,Sect A,1995,125:225-246.
  • 8KING J R.Exact polynomial solutions to some nonlinear diffusion equations[J].Physica D,1993,64:35-65.
  • 9DOLYE P W.Separation of variables for scalar evolution equations in one space dimension[J].J Phys A,1996,29:7581-7585.

同被引文献8

  • 1Changzheng Qu.Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Studies in Applied Mathematics . 1997
  • 2Victor A. Galaktionov.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics . 1995
  • 3A.S. Fokas,Q.M. Liu.Nonlinear interaction of traveling waves of nonintegrable equations. Physical Review Letters . 1994
  • 4R.Z. Zhdanov.Conditional Lie-B\"acklund symmetry and reduction of evolution equations. J. Phys. A, Math. Gen . 1995
  • 5Changzheng Qu,Chunrong Zhu.Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method. J. Phys. A, Math. Theor . 2009
  • 6GALAKTIONOV V A,SVIRSHCHEVSKII S R.Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. . 2007
  • 7高晓琴,谢离丽.一类拟线性方程三角形式不变子空间的研究[J].纺织高校基础科学学报,2012,25(1):48-50. 被引量:1
  • 8MA Wen-Xiu.A refined invariant subspace method and applications to evolution equations[J].Science China Mathematics,2012,55(9):1769-1778. 被引量:21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部